SEMINAR: Far-Field Optical Nanothermometry via Individual Luminescent Nanoparticles | Mechanical and Aerospace Engineering SEMINAR: Far-Field Optical Nanothermometry via Individual Luminescent Nanoparticles | Mechanical and Aerospace Engineering

Loading Events
All Events
  • This event has passed.

SEMINAR: Far-Field Optical Nanothermometry via Individual Luminescent Nanoparticles

January 29, 2019 @ 10:00 am - 11:15 am

Event Navigation


From transistors to LEDs, as device length scales trend downward, poor thermal dissipation increasingly leads to nanoscale hotspots that limit performance. To address this challenge, nanoscale thermometry tools must be developed. Conventional far-field optical methods like thermoreflectance provide a convenient non-contact approach, but these techniques are fundamentally diffraction limited. To circumvent the optical diffraction limit, I employ the temperature-dependent luminescence of lanthanide-doped upconverting nanoparticles to achieve sub-50 nm single-point temperature measurements. Single-particle measurements typically require excitation intensities orders of magnitude higher than nanoparticle ensembles, but the potential for single-particle self-heating has received limited attention because even highly conservative thermal estimates predict negligible self-heating. Unexpectedly, I observe an increase in the common “ratiometric” thermometry signal of individual NaYF4:Yb3+,Er3+ nanoparticles corresponding to a temperature rise over 50 K if interpreted as thermal. To resolve this apparent conflict between model and experiment, I systematically vary the substrate thermal conductivity, nanoparticle-substrate contact resistance, and nanoparticle size. I experimentally demonstrate that this effect is an artifact, not a true temperature rise. Instead, rate equation modeling shows that this artifact is due to increased radiative and non-radiative relaxation from higher-lying Er3+ energy levels. These results have important implications for the calibrations required for accurate single-particle thermometry.


Andrea Pickel is a Ph.D. candidate in the department of Mechanical Engineering at the University of California, Berkeley. Her research focuses on harnessing the unique properties of luminescent materials to develop new nanothermometry techniques and analyzing the thermal properties of novel energy conversion materials at temperatures as high as 3,000 K. She is the recipient of an NSF Graduate Research Fellowship and a UC Berkeley Chancellor’s Fellowship. Andrea received her B.S. in Mechanical Engineering with University and College Honors from Carnegie Mellon University, where she researched lead-free solder/magnetic nanoparticle composites for electronic packaging applications.


January 29, 2019
10:00 am - 11:15 am
Event Categories:


EB3 3122