MEMS Platforms for in-situ Testing of Mechanical Properties of Nanostructures

Yong Zhu, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States

© 2022 Elsevier Ltd All rights reserved.

Abstract

Microelectromechanical systems (MEMS) have received much interest for in-situ mechanical testing of nanostructures. This article reviews the recent advances in this promising field. MEMS platforms have been used for quasi-static tensile testing, high-strain-rate testing, true displacement- or force-controlled testing via feedback control, fatigue testing, thermomechanical testing, and multiphysical testing of nanostructures. Representative MEMS platforms and related in-situ mechanical testing of nanostructures are presented. A brief summary and outlook for future research directions are provided.

Key Points

- Presented major types and configurations of MEMS platforms.
- Reviewed MEMS platforms for quasi-static tensile testing, high-strain-rate testing, true displacement- or force-controlled testing via feedback control, fatigue testing, thermomechanical testing, and multiphysical testing of nanostructures.
- Summarized the mechanical properties and deformation mechanisms obtained using the MEMS platforms.
- Discussed the challenges and potential directions for MEMS platforms for in-situ nanomechanical testing.

Introduction

In this article we describe recent progress in the development of microelectromechanical system (MEMS) platforms for in-situ testing of the mechanical properties of nanostructures. Our goal is to demonstrate that the MEMS platforms can be very useful for evaluating a wide range of mechanical properties of different types of nanostructures. With the advance in nanotechnology has come a host of nanostructures, such as nanoparticles, nanowires (NWs), nanotubes and 2D materials (e.g., graphene, hexagonal boron nitride, and transition metal dichalcogenides) that exhibit outstanding mechanical properties. Such nanostructures are important building blocks for a broad spectrum of applications including energy harvesting and storage (Chan et al., 2008; Liu et al., 2012; Wang and Song, 2006), nanoelectromechanical systems (NEMS) (Feng et al., 2007; Loh and Espinosa, 2012), flexible electronics (Fan et al., 2009; McAlpine et al., 2003) and stretchable electronics (Kim et al., 2009; Lipomi et al., 2011; Ryu et al., 2009; Xu et al., 2011; Yao and Zhu, 2015), where their mechanical properties are of significant relevance.
These nanostructures can provide valuable insights into fundamental deformation mechanisms owing to their small size (typically around 100 nm or less) and scarce and often well-defined defect structures. With the small size, on one hand, they are compatible with transmission electron microscopy observation without additional sample preparation; on the other hand, they come increasingly within the reach of the state-of-the-art computational modeling capabilities, thus making possible direct comparison between nanomechanical tests and atomistic simulations. As a result of the “bottom-up” synthesis, nanostructures typically possess few defects and the defects can be well characterized. Recent advances in nanomechanical testing methods (Agrawal et al., 2011; Gianola and Eberl, 2009; Kang et al., 2017; Zhu, 2016; Zhu et al., 2007) and imaging tools such as electron microscopies (Minor and Dehm, 2019; Robertson et al., 2011, 2008) has enabled real-time observation of deformation and defect dynamics. For example, dislocation nucleation from free surfaces has been found as the dominant dislocation mechanism at the nanoscale (Diao et al., 2003; Park and Zimmerman, 2005; Zheng et al., 2010; Zhu et al., 2008). Dislocation-twin boundary (TB) interactions have been found responsible for interesting mechanical behaviors such as recoverable plasticity (Qin et al., 2015), Bauschinger effect (Bernal et al., 2015), and detwinning under nominally tensile loading (Cheng et al., 2017). In addition, the nanostructures can serve as model systems to probe critical mechanical behaviors. For example, metal NWs have been used to investigate hydrogen embrittlement, unambiguously showing that hydrogen near the NW surface can suppress surface dislocation nucleation, resulting in reduced plastic deformation (Yin et al., 2019a).

The article is organized as follows. In Section “Overview”, We start with three commonly used device types, based on the involvement of external and/or on-chip transducers, and related device configurations and other considerations such as sample preparation. Other relevant issues such as device fabrication and displacement/strain measurements are not covered. Interested readers are referred to previous reviews (Haque et al., 2011; Zhu and Chang, 2015). In Section “Nanomechanical Testing Results”, representative MEMS platforms and testing results inside electron microscopy such as scanning and transmission electron microscopy (SEM/TEM) are reviewed. Such platforms have been used for quasi-static tensile testing, high-strain-rate testing, true displacement- or force-controlled testing via feedback control, fatigue testing, thermomechanical testing, and multiphysical testing of nanostructures. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical testing are discussed.

Overview

In this section, we present three common device types for tensile testing along with typical MEMS actuation and sensing methods used in the testing. Next, a brief review of the manipulation methods to mount nanostructures onto the MEMS platforms is presented. In this review, we limit the scope to uniaxial tensile testing, although the MEMS devices can be readily applied for compression (Espinosa et al., 2007) and bending (Kang and Saif, 2013) testing too.

Device Types and Configurations

Tensile test is the most straightforward testing method to measure mechanical properties. In bulk a tensile testing machine typically consists of three parts: an actuator, a load cell (sensor), and a pair of grips for mounting specimens. The same concept is applied at the small scale. There have been considerable efforts in developing instrumentation for micro/nano-scale tensile testing. However, the methods for actuation, load sensing and sample gripping are different from and often much more difficult than the large-scale ones. MEMS-based actuation and load sensing have received much interests recently. MEMS devices can be categorized into three types, based on the involvement of external and/or on-chip transducers. For all three types, the specimen axial direction. The external actuator can be either hooked (Samuel et al., 2007) or glued (Naraghi et al., 2007a) to the gripping pad to impose the displacement. The speciﬁm or fabricated load sensor beam; the force is obtained by measuring the deflection of the load sensor beam, while the displacement is obtained by tracking two fiducial markers on both sides of the specimen. The thin ﬁlm specimen is co-fabricated with the MEMS stage.

For the third (on-chip) type, electrostatic and thermal actuation are the two most popular actuation mechanisms due to their compatibility with typical microfabrication processes (Espinosa et al., 2007; Zhu et al., 2005). For electrostatic actuation, the comb-
drive actuator is widely used as the generated electrostatic force is nearly constant over the travel range at a given voltage (Saif and MacDonald, 1996). Thermal actuation is based on Joule heating; so-called V-shaped (Que et al., 2001; Zhu et al., 2006) and Z-shaped thermal actuators (Guan and Zhu, 2010a; Ouyang and Zhu, 2012) are most widely used. A critical challenge for using thermal actuators in nanomechanical testing is the undesired heating of the specimen. To mitigate this problem, Zhu et al. introduced a heat sink mechanism between the actuator and the specimen, which can limit the temperature rise at the specimen region to below 5°C without adding extra steps in microfabrication to introduce the heat sink structure (Qin and Zhu, 2013; Zhu et al., 2006).

For both the second and third types, an on-chip load sensor is typically made of a flexible member, so the force is measured as the sensor displacement multiplied by the sensor stiffness. In addition to direct imaging of the sensor displacement, electronic sensing can be realized using a few mechanisms including capacitive sensing and piezoresistive sensing. Capacitive sensing is perhaps the most popular sensing mechanism in MEMS with commercially available chips for data acquisition. In particular, differential capacitive sensing has been widely used in many MEMS devices such as accelerometers (Boser and Howe, 1996). Several authors have incorporated a commercially available sensing chip (MS3110, MicroSensors) in their MEMS platforms with a differential capacitive sensor (Pant et al., 2011; Zhang et al., 2009b; Zhu and Espinosa, 2005). Si is a common piezoresistive material including single-crystalline and polycrystalline Si, therefore piezoresistive sensing is widely used in MEMS (Barlian et al., 2009; Messenger et al., 2009) and has been recently explored for load sensing in MEMS testing platforms (Ouyang and Zhu, 2012).

The on-chip MEMS platforms include two typical configurations, depending on the relative position of the specimen. In the first configuration the specimen is positioned between the actuator and the load sensor (Fig. 2(a) and (b)) (Zhu et al., 2005; Zhu and Espinosa, 2005), while in the second the load sensor is between the actuator and the specimen (Fig. 2(c)) (Li et al., 2009a,b). The first configuration is more commonly used (Chen et al., 2012; Pant et al., 2011; Steighner et al., 2011; Zhang et al., 2009b), e.g., also used in the externally actuated platform by Haque and Saif (2002a). But one drawback is that the specimen moves a lot due to the rigid-body motion as a result of the load sensor displacement, which could add challenges for in-situ observations. The second configuration can overcome this drawback as one end of the specimen is fixed (Tsuchiya et al., 2012). As shown in Fig. 2(c), the specimen displacement is measured by sensor B, while the load is measured by the displacement difference between sensors A and B multiplied by the load cell (sensor) stiffness. Note that the load cell is a simple folded beam.

For the three types of MEMS platforms, we only discussed the basic capabilities for quasi-static tensile testing. But these platforms offer tremendous potential for further developments to meet advanced testing needs such as high strain rate, fatigue, displacement control, creep and stress relaxation, thermomechanical testing, and electromechanical testing, especially using the on-chip type. In Section “Nano-mechanical Testing Results” we will discuss the results obtained from these advanced testing capabilities after the basic testing capabilities.

Sample Preparation

A key step is to integrate the nano-specimen onto the MEMS platform with the specimen aligned with the loading direction and clamped at both ends. Two major methods are used, co-fabrication of the specimen with the device and “pick-and-place” by nanomanipulation (Zhu and Espinosa, 2005). Here we briefly discuss these sample preparation methods, while more details can be found elsewhere (Espinosa et al., 2012; Zhu et al., 2007).

A flexible and widely used method for mounting “bottom-up” synthesized nanostructures onto MEMS devices is “pick-and-place” by nanomanipulation (Zhu and Espinosa, 2005). Electron Beam Induced Deposition (EBID) of residual hydrocarbon in a SEM chamber or a precursor gas (e.g., platinum) is commonly used for clamping the samples. This method has been used successfully for
A wide range of nano-structures (Agrawal et al., 2009; Chen et al., 2012; Guo et al., 2011; Peng et al., 2008; Zhang et al., 2009a; Zhang et al., 2011; Zhu et al., 2009). However, the process is labor intensive. And it is unclear if the clamping mechanism is sufficiently rigid and strong. Gianola and co-workers reported specimen sliding due to compliance and permanent deformation of the clamps (Murphy et al., 2013). Zhu and co-workers found that the measured Young's modulus of a NW (using the resonance method) depends on the clamping. They pointed out true Young's modulus can be measured if the critical clamp size is reached. The critical clamp size is a function of the NW diameter and modulus ratio of the clamp material and the NW. Adhesives (e.g., epoxy) have been used to clamp polymer nanofibers (Naraghi et al., 2007b), carbon nanotubes (Ganesan et al., 2010) and Ni nanobeams (Hosseinian and Pierron, 2013). For larger specimens, e.g., thin films, separately fabricated samples can be mounted onto a MEMS device with the "pick-and-place" approach (Kang et al., 2010; Liebig et al., 2016).

Co-fabrication is a more scalable method to integrate the "top-down" specimens during the microfabrication process. However, the fabrication process is typically more complicated and the materials that can be co-fabricated are limited. Several groups have developed specialized fabrication processes to incorporate Au NWs (Yilmaz and Kysar, 2013), Al films (Han and Saif, 2006; Haque and Saif, 2002b), Au films (Rajagopalan et al., 2007), and Pt ultra-thin films (Abbas et al., 2012) onto the MEMS devices for in situ tensile testing. Due to the residual stresses involved in the fabrication processes, the specimens can be stressed after fabrication, e.g., buckled.

An extension of the co-fabrication method is directed synthesis, that is, "bottom-up" synthesis of nanostructures into "top-down" fabricated MEMS devices. This is a promising method that can be more scalable than the "pick-and-place" approach. The boundary conditions are also supposed to be more robust. However, so far only limited materials have been synthesized, including Si (He and Yang, 2006) and Ge NWs (Greil et al., 2012) between microfabricated Si posts. Moreover, no direct synthesis into movable MEMS devices has been reported.

Nanomechanical Testing Results

A wide range of nanostructures have been tested using MEMS platforms (Agrawal et al., 2009, 2008; Bernal et al., 2015, 2011; Brown et al., 2011, 2009; Chang and Zhu, 2013; Chen et al., 2012, 2015; Cheng et al., 2019, 2017, 2014, 2020; Chisholm et al., 2012;
Desai and Haque, 2007; Filletre et al., 2012; Ganesan et al., 2010; Guo et al., 2013, 2011; Hosseinian and Pierron, 2013; Kiuchi et al., 2007; Locascio et al., 2009; Lu et al., 2011a; Naraghi et al., 2010, 2007a,b; Ozkan et al., 2010; Pant et al., 2012, 2011; Peng et al., 2008, 2012; Qin et al., 2015; Ramachandramoorthy et al., 2017, 2016; Steighner et al., 2011; Tsuchiya et al., 2012, 2008; Yashinski and Muhlstein, 2013; Yilmaz and Kysar, 2013; Yin et al., 2019a,b; Zhang et al., 2010, 2011, 2016; Zhir and Espinosa, 2005). Here we only discuss representative results to highlight the testing capabilities of the MEMS platforms.

Quasi-Static Tensile Testing

Key mechanical properties can be obtained from quasi-static tensile tests including elasticity (Young’s modulus), plasticity, and fracture. For nanostructures especially NWs, such tests have enabled the study on size effect on these mechanical properties in addition to the deformation mechanisms.

Elasticity

Size effect in elasticity is in general originated from surface elasticity (i.e., surface atoms can be stiffer or softer than the bulk atoms) and surface stress (Zhou and Huang, 2004). The softening effect is primarily due to the bond loss (i.e., loss of neighboring atoms on the surface), while the stiffening effect can be attributed to the electron redistribution (often called bond saturation) (Shim et al., 2005; Zhou and Huang, 2004) and/or surface reconstruction (Agrawal et al., 2008; Shim et al., 2005). Another mechanism that contributes to the size effect in elasticity is so-called bulk nonlinear elasticity. The compressive stress in the interior of a nanostructure caused by the tensile surface stress, notably in metallic nanostructures, is large enough to induce a nonlinear increase in the Young’s modulus of the interior atoms (Liang et al., 2005).

Agrawal et al. (2008) performed in-situ TEM tensile tests on [0001]-oriented ZnO NWs using a MEMS testing platform. A pronounced size effect in elasticity was found; more specifically, the Young’s modulus increases as the NW diameter decreases below ~80 nm while remains close to the bulk value (140 GPa) for NWs with larger diameters. Molecular dynamics (MD) simulations found that the surface atoms significantly contract towards the NW interior during surface reconstruction, leading to overall smaller interatomic spacing near the surface and hence stronger Coulomb force, which is responsible for the observed stiffening size effect in elasticity. Other studies using the resonance test (Chen et al., 2006) and the tension and buckling tests (Xu et al., 2010) also reported the similar stiffening size effect in ZnO NWs. Other NWs of ionic bonding (e.g., GaN NWs) exhibited a similar stiffening size effect, though much smaller in magnitude than ZnO NWs (Bernal et al., 2011).

NWs of covalent bonding and metallic bonding also exhibit size effects in elasticity but with different trends. In the case of Si NWs, Zhu et al. (2009) reported a softening size effect – the Young’s modulus decreases with the decreasing diameters when the diameter is below about 30 nm – which was attributed to the bond loss. In the case of penta-twinned Ag NWs, Zhu et al. (2012) and Filletre et al. (2012) reported pronounced stiffening effect, i.e., an increase of Young’s modulus with decreasing NW diameter. The penta-twinned Ag NWs were synthesized by the polyol method with <110> axial orientation and five {100} side surfaces (Sun and Xia, 2002). Note that a penta-twinned NW has five twin segments joined along a common quintuple line in the axial direction. Two independent tests on the same NW, in situ scanning electron microscopy (SEM) resonance test and tensile test, were conducted to further understand the size effect in elasticity in Ag NWs (Chang et al., 2016). Fig. 3 shows the size effect in Young’s modulus under the two types of the tests, considering the size-dependent cross-sectional shape (to be discussed in the following). A comparison of the measured Young’s moduli under the two types of tests suggested that some combination of bulk nonlinear elasticity and surface elasticity is responsible for the observed elasticity size effect in Ag NWs.

![Fig. 3](https://doi.org/10.1016/j.eml.2016.03.007)

Fig. 3 Young’s modulus as a function of Ag NW diameter. The measured Young’s modulus was normalized by the bulk modulus of 84 GPa. Reproduced from Chang, T.-H., Cheng, G., Li, C., Zhu, Y., 2016. On the size-dependent elasticity of penta-twinned silver nanowires. Extreme Mech. Lett. 8, 177–183. Available at: https://doi.org/10.1016/j.eml.2016.03.007.
In addition to the clamping effect mentioned in Section “Sample Preparation,” two other effects are important in measuring mechanical properties of NWs especially elasticity. The first is the effect of cross section. NWs typically possess well-defined facets with side surfaces of low surface energy, e.g., truncated rhombic cross section with \{111\} and \{110\} side surfaces for metal NWs (Yin et al., 2019b). It is important to know the cross-sectional shape when calculating the stress (tension test) or resonance frequency (resonance test), rather than simply assuming the circular cross section. Indeed, the NW cross section could with the diameter. For example, the cross-sectional shape of the Ag NWs was found to transit from pentagon to circle with decreasing NW diameter, which can modify the Young’s modulus as much as 8% (for resonance test) and 19% (for tensile test) for the tested diameter range (30–140 nm) (Chang et al., 2016). The second is the effect of anisotropic elasticity. Crystalline NWs are typically anisotropic, however, we usually assume isotropy (e.g., when calculating the resonance frequency in the resonance test). The anisotropic elasticity effect was found negligible for a cantilevered NW (Chang et al., 2016), especially under two conditions: (1) the length to diameter ratio (aspect ratio) is over 10 and (2) the resonance amplitude is below a certain fraction of the NW length (e.g., < 1/10).

Plasticity

It is now well known that surface dislocation nucleation plays a dominant role in the incipient plasticity of metallic NWs (Diao et al., 2003; Park and Zimmerman, 2005; Zheng et al., 2010; Zhu et al., 2008). Following the incipient plasticity, twinning and dislocation slip are two competitive deformation mechanisms in face-centered cubic (FCC) metals. The rivalry between the two mechanisms prevails in FCC metallic NWs, depending on the axial orientation (Schmid factor) and the generalized stacking fault energies (Weinberger and Cai, 2012). In NWs both mechanisms start with partial dislocation nucleation from the free surfaces. Yin et al. (2019b) recently found that another factor, cross-sectional shape, can influence the competition between the two mechanisms in single-crystalline Ag NWs using in-situ TEM tensile testing and MD simulations, as shown in Fig. 4. The single-crystalline Ag NWs were synthesized by using a high-temperature molecular beam epitaxy method (Richter et al., 2009). Twin deformation accompanied by a large plasticity occurred in NWs with low aspect ratios. With the increasing aspect ratio, a shift in deformation mode from twinning to dislocation slip was observed. It was found that the energy barrier for twinning depends on the aspect ratio of the cross section, proportional to the change in surface energy caused by the twinning-induced reorientation of the surface facets.

Fig. 4 Engineering stress–strain curves of two single-crystalline Ag NWs with different aspect ratios, (a, c) small aspect ratio, (b, d) large aspect ratio. Reproduced from Yin, S., Cheng, G., Richter, G., Gao, H., Zhu, Y., 2019b. Transition of deformation mechanisms in single-crystalline metallic nanowires. ACS Nano 13, 9082–9090. Available at: https://doi.org/10.1021/acsnano.9b03311.
For NWs containing internal TBs, dislocations nucleated from free surfaces interact with TBs, leading to interesting mechanical behaviors such as recoverable plasticity and strain hardening. In the case of bi-twinned Ag NWs with a single TB parallel to the NW axis, partial dislocations can be hindered by the TB, and upon unloading all or part of the partial dislocations retract from the TB, leading to full or partial plastic strain recovery, respectively (Fig. 5(a)) (Cheng et al., 2020). The bi-twinned Ag NWs can also undergo stress relaxation, as a result of dislocation nucleation (Fig. 5(b)) (Cheng et al., 2020). Under larger loading, the partial dislocations can transmit across the TB, leading to localized dislocation slip or necking and eventual fracture. However, when the volume ratio between the two twin variants is small, another deformation mechanism – detwinning of the existing TB – could occur (Cheng et al., 2017), which can result in the twinning behavior similar to that reported in single-crystalline Ag NWs (Yin et al., 2019b).

For penta-twinned Ag NWs, stress relaxation and plastic strain recovery were also observed, similar to the bi-twinned Ag NWs but to a larger extent (Fig. 5(c) and (d)). The inhomogeneous stress field generated intrinsically by the fivefold twin structure can further drive the partial dislocations back upon unloading (Bernal et al., 2015; Qin et al., 2015). The TBs confine dislocation activities with a direct impact on ductility and strength by forming a complicated 3D dislocation structure (Filletier et al., 2012; Narayanan et al., 2015). MEMS-based tensile testing was used to study the influence of strain rate on the deformation of Ag NWs. Brittle fracture was observed at low strain rates, while ductile fracture at high strain rates (Ramachandramoorthy et al., 2016).

Fracture

Mechanical properties of SiC NWs have been measured via in situ SEM tensile tests using a MEMS platform (Cheng et al., 2014), where internal defects, stacking faults, were found to play a critical role. The SiC NWs with the $<111>$ axial orientation were synthesized by the CVD-VLS process (Shim and Huang, 2007). The microstructure of SiC NWs consisted of pure 3C structure, 3C...
structure with an inclined stacking fault, and highly defective structure in a periodic fashion along the NW length. The SiC NWs were reported to fail in brittle fracture at room temperature, in contrast to the superplasticity reported previously (Zhang et al., 2007). The SiC NWs exhibited strong size effect in the fracture strength, that is, the fracture strength increased with decreasing diameter, up to \(425\) GPa approaching the theoretical strength of 3C SiC (Fig. 6(a)). The size effect on fracture strength was reported to be due to the size-dependent defect density (of the 3C structure with 19.47° stacking faults), rather than the surface effect as commonly believed (Fig. 6(b)). Interestingly all the cracks were initiated and propagated in the 3C segments with the 19.47° stacking faults rather than in the highly defective segments (Fig. 6(c)), in good agreement with MD simulations (Wang et al., 2012).

Fig. 6 (a) Representative tensile stress–strain curves of SiC NWs. (b) Defect density as a function of NW diameter. Here 90° and 19.47° defects refer to highly defective structures and 3C structures with a 19.47° SFs, respectively. (c) High-resolution TEM image of the fracture surface of a SiC NW. (d) Fracture strength of SiC NWs and whiskers as a function of the diameter. Reproduced from Cheng, G., Chang, T.-H., Qin, Q., Huang, H., Zhu, Y., 2014. Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett. 14, 754–758. Available at: https://doi.org/10.1021/nl404058r.

High Strain-Rate Testing

Nanostructures are building blocks for applications like NEMS and flexible/stretchable electronics, where the loading rate can be high. On the other hand, MD simulations of nanostructures are typically conducted at strain rates of \(10^7\) to \(10^9\) s\(^{-1}\), which is over 10 orders of magnitude higher than the quasi-static experimental strain rates (typically \(10^{-5}\) to \(10^{-1}\) s\(^{-1}\)). Because of this mismatch, most experimental results cannot be directly compared to the MD results, hindering our understanding of the nanoscale mechanics. For these reasons it is of paramount importance to conduct nanomechanical testing at high strain rates. However, conducting such testing is challenging. Few rate-dependent experiments have been reported on nanostructures. With the electronically-controlled actuation and load sensing, MEMS based testing platforms offer a promising potential for high strain-rate nanomechanical testing.

Ramachandramoorthy et al. reported in-situ SEM tensile testing of bicrystalline Ag NWs at strain rates up to \(2\) s\(^{-1}\) (Ramachandramoorthy et al., 2016). A V-shaped thermal actuator was employed to provide the fast actuation. Both experiments and multiphysics simulations showed that the thermal actuator displacement remains linear up to 10 \(\mu\)m/s. An interesting brittle-to-ductile failure mode transition was observed at a threshold strain rate of 0.2 s\(^{-1}\). TEM observation revealed that dislocation density and localized plastic regions increase with increasing strain rate (Fig. 7(a)-(d)). As shown in Fig. 7(e), up to a strain rate of 0.02/s, the NWs failed in a brittle-like fashion. At higher strain rates, a drastic increase in ductility was observed, accompanied by modest
strain hardening. MD simulations showed that the ductility is attributed to deformation mechanisms such as grain boundary migration and dislocation interactions. This work nicely demonstrated the capability of MEMS platforms for high strain-rate nanomechanical testing as well as important mechanics insights this type of testing can offer. However, the thermal actuator is limited in the actuation speed due to the relatively slow heat transfer process involved (Guan and Zhu, 2010b; Lott et al., 2002).

To further increase the actuation speed, electrostatic actuation was sought. Li et al. (2020b) reported a MEMS platform with an electrostatic (comb-drive) actuator that achieved a constant strain rate over 200 s\(^{-1}\). An analytical model was derived to systematically investigate the dynamic response of the MEMS platform to alternating and ramp actuation forces in both vacuum and air. Two methods, capacitive readout and high-speed optical imaging, were used to measure the dynamic displacements. The natural frequencies and damping coefficients of the MEMS platform were obtained through model fitting, which were then used to predict its dynamic response under the ramp force. It was found that even under the linear ramp force (a linear function of time) the displacement is not linear, rather it includes a linear term and an oscillatory term as a result of the system dynamics. Fig. 8 shows the displacement of the MEMS platform under a ramp force in air, using the optical imaging.

Both capacitive readout and high-speed optical imaging were used to measure the displacements. The experimental results showed good agreement with the modeling results. The maximum strain rate the device can attain was found to be about 200 s\(^{-1}\). However, the capacitive readout used can only measure strain rate up to 22.6 s\(^{-1}\) (gauge length 2 \(\mu\)m) due to its limited bandwidth, which is nevertheless an order of magnitude higher than the highest strain rate (2 s\(^{-1}\)) reported so far using an electronic sensor.

The MEMS platform was used to test two single-crystalline gold nanowires at strain rates of 10\(^{-3}\) and 10 s\(^{-1}\) (Li et al., 2020b). The test at 10 s\(^{-1}\) exhibited enhanced ductility with a much larger fracture strain, consistent with the results by Ramachandranmoorthy. In addition, a more uniform decrease in diameter occurred under the high strain rate; by contrast, necking occurred at the lower strain rate.

Creep and Stress Relaxation

The majority of the current MEMS-based testing platforms have a common limitation, that is, they are neither truly displacement- nor force-controlled, which is necessary for capturing mechanical behaviors like stress relaxation, rapid stress drop due to certain relaxation mechanisms (e.g., dislocation or crack nucleation/propagation), creep and etc. This limitation originates from the limited stiffness of the load sensor (often comparable to or even smaller than that of the specimen); the load sensor need to deform substantially in order to detect the force, so the specimen deformation is coupled with the load sensor deformation (Espinosa et al., 2007; Naraghi et al., 2007a).

To address this issue, a straightforward method is to increase the stiffness of the load sensor. It did prevent catastrophic fracture in NWs, leading to the observation of stable plasticity. However, the drawback is obvious too – the force cannot be measured (Shin et al., 2020). The other method is to employ electronic feedback control. Pantano et al. (2014) developed a feedback control scheme by adding an additional actuator at the far end of the capacitive load sensor, which can pull the load sensor back to the original position via feedback control. Using this scheme displacement-controlled loading was realized. The force in this case was measured by the feedback voltage applied to the additional actuator. While this work is an impressive advance in the field, two limitations exist: (1) an extra actuator must be added, and (2) this scheme cannot realize force-controlled loading. In addition to capacitance, other sensing mechanisms have been explored for feedback control such as piezoresistivity (Ouyang and Zhu, 2012).

Recently Zhu and co-workers have reported a MEMS-based platform using a new electronic feedback control scheme that can achieve both displacement- and force-controlled tensile testing without the need of an additional actuator (Li et al., 2020a). The device was comprised of an electrostatic actuator and two capacitive sensors (Fig. 1(c)). Feedback control was implemented using a
Comparison of displacements from the dynamics model and measured optically in air when loading time is (a) 1 s, (b) 1 ms, and (c) 0.1 ms. The frame rates are 50, 16,000, and 95,000 fps, respectively. Insets are the corresponding images. Scale bars are 100, 50, and 10 μm, respectively. A higher frame rate is associated with a smaller field of view. Reproduced from Li, C., Zhang, D., Cheng, G., Zhu, Y., 2020b. Microelectromechanical systems for nanomechanical testing: Electrostatic actuation and capacitive sensing for high-strain-rate testing. Exp. Mech. 60, 329–343. https://doi.org/10.1007/S11340-019-00565-5/FIGURES/15.
proportional–integral–derivative (PID) controller directly on the electrostatic actuator. Both elongation and force of the specimen can be obtained electronically in real time. (Fig. 9).

Three representative tests – stress relaxation and creep of penta-twinned Ag NWs, and tensile test of single-crystalline Au NWs with sudden stress drop – were carried out to demonstrate the displacement- and force-controlled tensile testing of nanostructures. The activation volumes were extracted from the stress relaxation and creep tests, which indicated that additional dislocation mechanisms (e.g., dislocation-twin boundary interactions) exist in addition to surface dislocation nucleation in penta-twinned Ag NWs.

Take the stress relaxation tests of the penta-twinned Ag NWs as an example. It was previously found that penta-twinned Ag NWs exhibit stress relaxation as a result of vacancy diffusion assisted dislocation nucleation (Qin et al., 2015). However, the MEMS platform used was not capable of displacement control. An otherwise identical experiment except under displacement control was conducted with the newly developed MEMS platform, where a true stress relaxation test was realized. Fig. 10(a) shows the stress-strain curve of the specimen tested, with the corresponding strain versus time and stress versus time relationships shown in Fig. 10(b) and (c), respectively. It can be seen that the stress relaxed during the holding period while the strain remained constant. Fig. 10(d) shows the change in the resolved shear stress as a function of time. The apparent activation volume, 5.70 \(b^3 \), was obtained by fitting the stress relaxation data (Fig. 10(d)), where \(b \) denotes the magnitude of the Burgers vector.

Fatigue Testing

In-situ TEM fatigue tests with the MEMS platforms can provide unprecedented details about the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during the fatigue loading. For fatigue testing, it is necessary to conduct force and displacement measurements electronically, as the imaging is likely not fast enough. The P2P device from Hysitron has been used to study fatigue (Bufford et al., 2016). Pierron and co-workers have developed a dedicated MEMS platform that consists of two separated capacitive sensors that can measure the force and displacement simultaneously and independently (Hosseini and Pierron, 2013; Pant et al., 2011). This platform can also be used for ex-situ experiments that could investigate environmental effect in air.

Fatigue behavior typically includes three types: (1) cyclic plasticity and ratcheting above the yield strength, (2) low-cycle fatigue in the vicinity of the yield strength with fatigue life \(\sim 10^{10} \) cycles, and (3) high-cycle fatigue well below the yield strength with fatigue life over \(10^4 \) cycles. Espinosa and co-workers reported cyclic tensile testing of penta-twinned Ag NWs above the yield strength, using their MEMS tensile testing platform (Bernal et al., 2015). Upon unloading, Bauschinger effect,
asymmetric plastic flow, and partial recovery of the plastic deformation were observed (Fig. 11(a)). In-situ TEM and atomistic simulations found that these processes are attributed to the reversible dislocation activity. It has been previously found that the dislocation mechanism in penta-twinned NWs is the stacking fault decahedrons (SFDs). The incipient plastic mechanism through the nucleation of SFDs is fully reversible, but plasticity becomes only partially reversible as intersecting SFDs lead to dislocation reactions and entanglements. The same phenomenon was observed independently by Zhu and co-workers (Qin et al., 2015).

Using the "two-sensor" platform, Hosseinian and Pierron have investigated the fatigue of Au nanobeams with the grain size ranging from 10 to 400 nm (Hosseinian and Pierron, 2013). Fatigue tests were carried out both ex-situ and by in-situ TEM. In the ex-situ test, the specimen failed after 11,125 cycles and a ratcheting behavior was observed. But no obvious change in the microstructure was observed from post-mortem TEM images. Next an in-situ TEM fatigue testing was performed to observe the microstructure evolution. The specimen failed at 6995 cycles with the same ratcheting behavior (Fig. 11(b)). During the in-situ TEM test, a large number of dislocations were found to nucleate after 400 cycles, accompanied with twins and stacking faults. After fracture a large number of dislocations can be seen near the fracture plane.

Using the P2P platform, Bufford et al. (2016) investigated high cycle fatigue of nanocrystalline Cu films by in-situ TEM. Controllable loads were applied at frequencies from one to several hundred Hz, enabling accumulations of 10^6 cycles per hour. In-situ TEM allowed measurement of slow crack extension rates, $\sim 10^{-12}$ m · cycle⁻¹, with a load well below the tensile yield strength. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard TEM imaging and diffraction-based orientation mapping (Fig. 11(c)). Enlarged grains with different orientations were found near the crack initiation site and stable propagation path. Areas of interest were readily tracked by TEM in real time. For analytical techniques requiring longer data acquisition times, loading experiments were periodically paused and then resumed later.
Thermomechanical Testing

For device applications it is inevitable for nanostructures to experience different temperatures. Thus, it is of relevance to characterize their thermomechanical behavior. Kang and Saif developed a MEMS platform for in-situ uniaxial test of micro/nanoscale samples at high temperature (Kang and Saif, 2011). Fabricated out of SiC, this platform was able to sustain temperature up to 700 °C, which is much higher than those made of Si. Based on their earlier design (Haque and Saif, 2002a), Joule heating was incorporated for heating while a local bi-metal type temperature sensor was used for temperature measurement. The platform was extended for bending tests under elevated temperature, which was used to study the possible size effect on the BDT temperature of Si. Their results showed that the BDT temperature of Si reduces with sample size, e.g., 293 °C for a sample size of 720 nm (Kang and Saif, 2013). Microfabricated heaters have also been integrated to a thermomechanical testing platform for testing microscale films (Sim et al., 2013).

Chen et al. integrated their MEMS platform inside a vacuum cryostat including a heater, a cooling channel with liquid nitrogen circulation and a PID temperature controller (Chen et al., 2014). The vacuum chamber has a fused silica window on top so that the MEMS platform inside can be viewed by an optical microscope. Their setup is capable of achieving temperature range from 77 to 475K. The authors tested <110> Pd NWs using the setup and found the NW strength varies as a function of temperature (Chen et al., 2015). In particular, they found a clear decline in yield strength with increasing temperature, which implies that surface dislocation nucleation is assisted by thermal fluctuations. It is well known now that for nanostructures with diameter less than ~100 nm (e.g., NWs), the dominant dislocation mechanism is surface dislocation nucleation. However, the origin of the surface dislocation nucleation remains elusive. In this work the authors speculated that surface diffusion might play an important role in the initiating the surface dislocation nucleation.

Chang and Zhu (2013) has developed a MEMS thermomechanical platform with an on-chip heater for in-situ mechanical testing of 1D nanostructures from room temperature to 600K. The MEMS platform consists of a comb-drive actuator, a capacitive load sensor, a specimen gap, and a heater based on Joule heating in close proximity to the specimen gap, as shown in Fig. 12. The entire platform is symmetric to ensure the same temperature on both sides of the specimen to avoid temperature gradient and heat flow through the specimen. The temperature distribution in air was measured by Raman spectroscopy. Fully 3D multiphysics simulation was used to predict the temperature distribution in vacuum. The heater consists of multiple Z-shaped beams, whose dimensions were carefully designed in order to purposely compensate the thermal expansion of the long axial shuttles of the actuator and sensor.
Brittle to ductile transition (BDT) has been extensively studied for bulk Si. However, it remains unclear how BDT in Si NWs is affected by the NW size and in particular if Si NWs become ductile at room temperature. Several studies showed that Si NWs behave linear elastically until brittle fracture under tension (Gordon et al., 2009; Tang et al., 2012; Zhang et al., 2016; Zhu et al., 2009); by contrast, other studies demonstrated that Si NWs could exhibit substantial plastic deformation under tension (Han et al., 2007) and especially under bending (Elhebeary et al., 2020; Kang and Saif, 2013; Tang et al., 2012). Using the in-situ thermomechanical testing device discussed above, Cheng et al. found that Si NWs are brittle at room temperature but exhibits ductile behavior with dislocation-mediated plasticity at elevated temperature by in-situ temperature-controlled nanomechanical tensile testing in TEM (Cheng et al., 2019). Si NWs were synthesized by chemical vapor deposition (CVD) following a vapor-liquid-solid (VLS) process (Wu et al., 2004; Zhu et al., 2009), with (112) axial orientation and a single TB along the NW length. 78 Si NWs were tested between room temperature and 600K, with representative results shown in Fig. 13. The testing results revealed that unconventional (110) dislocations become highly active with increasing temperature, resulting in the transition from brittle fracture to dislocation-mediated plasticity and ductile fracture at elevated temperature.

Brittle to ductile transition (BDT) has been extensively studied for bulk Si. However, it remains unclear how BDT in Si NWs is affected by the NW size and in particular if Si NWs become ductile at room temperature. Several studies showed that Si NWs behave linear elastically until brittle fracture under tension (Gordon et al., 2009; Tang et al., 2012; Zhang et al., 2016; Zhu et al., 2009); by contrast, other studies demonstrated that Si NWs could exhibit substantial plastic deformation under tension (Han et al., 2007) and especially under bending (Elhebeary et al., 2020; Kang and Saif, 2013; Tang et al., 2012). Using the in-situ thermomechanical testing device discussed above, Cheng et al. found that Si NWs are brittle at room temperature but exhibits ductile behavior with dislocation-mediated plasticity at elevated temperature by in-situ temperature-controlled nanomechanical tensile testing in TEM (Cheng et al., 2019). Si NWs were synthesized by chemical vapor deposition (CVD) following a vapor-liquid-solid (VLS) process (Wu et al., 2004; Zhu et al., 2009), with (112) axial orientation and a single TB along the NW length. 78 Si NWs were tested between room temperature and 600K, with representative results shown in Fig. 13. The testing results revealed that unconventional (110) dislocations become highly active with increasing temperature, resulting in the transition from brittle fracture to dislocation-mediated plasticity and ductile fracture at elevated temperature.
Electromechanical Testing

It is of fundamental and technological importance to understand the multiphysical coupling in nanostructures. Of particular interest is the co-called elastic strain engineering, that is, how mechanical strain can affect other physical and chemical properties such as electronic, optical, magnetic, phononic, and catalytic properties. Nanostructures typically exhibit ultrahigh mechanical strength, thus offering unprecedentedly large room for elastic strain engineering. Bernal et al. has developed a MEMS platform to characterize electromechanical coupling of NWs using the MUMPs-PLUS process (MEMSCAP, Durham, NC) that includes a silicon nitride layer beneath the polysilicon structural layer for electric isolation (Bernal et al., 2014). Based on the original design that consists of a thermal actuator, a specimen gap and a load sensor (Zhu et al., 2006), four conductive support beams plus four deposited Pt lines form the four electrical paths for the four-point measurement, as shown in Fig. 14(a), (b), and (c). Penta-twinned Ag NWs and Si NWs were tested representative of metallic and semiconductor NWs, respectively. For the Ag NWs, the resistance variations were attributed to the NW dimensional changes; while for the Si NWs, the piezoresistance coefficients were found to be similar to bulk values (Fig. 14(d)).

Zhang et al. (2011) fabricated an electromechanical MEMS platform based on a standard SOI process, but with a SiO2 layer beneath the structural layer for electrical isolation. The authors investigated piezoresistivity of Si NWs using the platform and found that e-beam irradiation during SEM imaging can have a significant effect on the I–V characteristics of the NWs. Kiuchi et al. (2008) fabricated an electromechanical MEMS platform based on their previous mechanical platform (Kiuchi et al., 2007).

Fig. 14 (a) Overview of the MEMS platform. (b) Schematic and (c) SEM image of a NW laid on an insulating shuttle and connected in the four-point configuration. (d) Relative resistance change of two Si NW samples as a function of strain. Reproduced from Bernal, R.A., Filleter, T., Connell, J., et al., 2014. In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires. Small 10, 725–733. https://doi.org/10.1002/smll.201300736.
Electrical resistance of carbon NWs was measured as a function of strain. The gauge factor was measured to be 0.7 below a tensile strain of 4% but -0.9 above 4%. Note that an external Kelvin bridge method was used for the resistance measurement.

Murphy et al. (2014) studied thermal conductivity of Si NWs as a function of tensile strain. A MEMS platform was used to apply tensile strain to the specimen, while Raman spectroscopy was used to measure its thermal conductivity. Their results showed that phononic transport in undoped Si NWs (diameter range 170–180 nm) is largely unaffected by uniform tensile strain, but point defects introduced via ion bombardment can reduce the thermal conductivity by over 70%.

Using photoluminescence and Raman spectroscopy, optomechanical behavior of direct-bandgap NWs (e.g., Ge and GaAs NWs) was investigated (Greil et al., 2012; Signorello et al., 2014, 2013). Compared to bulk Ge, an anomalously high and negative-signed piezo-resistive coefficient was found (Greil et al., 2012). A rapid decrease in resistivity and a red-shift in photocurrent spectra was reported for GaAs NWs under high tensile strain (Signorello et al., 2013). A small uniaxial stress was found to induce a reversible direct-to-pseudodirect band structure transition, which can switch on and off luminescence of wurtzite GaAs NWs (Signorello et al., 2014). Of note is that most MEMS-based in-situ testing has been performed inside SEM or TEM. Integration of MEMS platforms with other types of microscopy or spectroscopy could offer exciting opportunities for mechanical testing especially multiphysical testing of nanostructures.

Summary and Outlook

We have reviewed the recent advances in the field of mechanical characterization of 1D nanostructures using MEMS platforms. Many different types of MEMS platforms have been designed, fabricated and employed for nanomechanical testing including basic tensile testing, high-strain-rate testing, creep and stress relaxation, fatigue testing, thermomechanical testing, and multiphysical testing. A large number of nanostructures have been characterized including carbon nanotubes, metallic NWs, semiconductor NWs, ceramic NWs, and polymer nanofibers. MEMS platforms have significantly facilitated our studies of the nanoscale mechanical behaviors.

It is worth noting that much of the early nanomechanical measurements revealed significant scatter and discrepancy, which is understandable considering the infancy of the field, the challenge of conducting such measurements, and the differences in the shape and microstructures of the specimens. With continued advance in testing methods and careful consideration of the factors mentioned above, more consistent testing results have been and will continue to emerge. For example, efforts have been taken on systematic examination of the effects of sample cross sections (Chang et al., 2016) and microstructures (Bernal et al., 2015; Qin et al., 2015; Wang et al., 2013), loading modes (Chang et al., 2016; Xu et al., 2010), and boundary conditions (Murphy et al., 2013; Qin et al., 2012).

In addition to the basic mechanical properties (e.g., Young's modulus, yield strength, and fracture strength), advanced behaviors and deformation processes of nanostructures have gained increasing interest. Such behaviors are dependent on the temperature, strain rate, time, and environment, among other variables, which are of direct relevance to service life of nanostructures. Multiphysical properties of nanostructures are of particular interest. Given the large elastic strain range of NWs, they are ideal candidates to tune other properties (e.g., electric, thermal, optical, catalytic) using elastic strain.

With the recent advance in electron microscopy (Campbell et al., 2014) (e.g., dynamic transmission electron microscopy, DTEM (Kim et al., 2008) and 4D scanning transmission electron microscopy, 4D-STEM (Ophus, 2019)), it might become possible to capture the dynamic response of nanostructures with atomic resolution. Combination of MEMS and advanced electron microscopy, together with the limited volume of nanostructures, could offer exciting opportunities for probing the nanoscale mechanical and other physical behaviors. Beyond electron microscopy, it is promising to combine MEMS platforms with atomic force microscopy (Chasiotis and Knauß, 2002; Elhebeary et al., 2020) and spectroscopic methods such as Raman spectroscopy (Spolenak et al., 2010) and photoluminescence spectroscopy (Sun et al., 2013).

As the number of atoms in the nanostructures comes increasingly within the reach of the state-of-the-art computational modeling capabilities, comparison between nanomechanical tests and MD simulations has become closer to reality. However, the well-known challenge is that MD simulations operate at time scales (hundreds of nanoseconds) and strain rates (10^6 s^{-1} and above) that are orders of magnitude faster than seen experimentally. While recent efforts in both experiments (Li et al., 2020b; Ramachandramoorthy et al., 2016) and simulations (Tao et al., 2018; Yan et al., 2016; Yan and Sharma, 2016; Zhu et al., 2008) have been made to bridge the gap, further work is warranted to realize true comparison between nanomechanical tests and MD simulations side by side, which holds great promise to elucidate the nanoscale deformation behaviors.

2D materials including graphene, hexagonal boron nitride, transition metal dichalcogenide, and MXenes have received extensive interests (Akinwande et al., 2017; Dai et al., 2019). Their mechanical properties including interfacial properties have been investigated mostly on a stretchable substrate (Cao et al., 2014; Jiang et al., 2014; Jiang and Zhu, 2015; Na et al., 2016; Papageorgiou et al., 2017). MEMS platforms have been recently used to study mechanical properties of freestanding 2D materials (Cao et al., 2020; Yang et al., 2021; Zhang et al., 2014). This is a relatively new and open field. MEMS platforms with all the advanced testing capabilities such as temperature, strain rate, and displacement control could be very valuable for mechanical testing of 2D materials.

Acknowledgment

We would like to gratefully acknowledge the financial support of the National Science Foundation (NSF) under Award Nos. 1762511 and 1929646.

