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Origami/Kirigami-Guided Morphing of Composite Sheets

Jianxun Cui, Felipe R. Poblete, and Yong Zhu*

Several strategies are recently exploited to transform 2D sheets into 
desired 3D structures. For example, soft materials can be morphed into 
3D continuously curved structures by inducing nonhomogeneous strain. 
On the other hand, rigid materials can be folded, often by origami/
kirigami-inspired approaches (i.e., flat sheets are folded along prede-
signed crease patterns). Here, for the first time, combining the two 
strategies, composite sheets are fabricated by embedding rigid origami/
kirigami skeleton with creases into heat shrinkable polymer sheets to 
create novel 3D structures. Upon heating, shrinkage of the polymer sheets 
is constrained by the origami/kirigami patterns, giving rise to laterally 
nonuniform strain. As a result, Gaussian curvature of the composite sheets 
is changed, and flat sheets are transformed into 3D curved structures. A 
series of 3D structures are folded using this approach, including cones 
and truncated pyramids with different base shapes. Flat origami loops are 
folded into step structures. Tessellation of origami loops is transformed 
into 3D checkerboard pattern.
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The third strategy is to create laterally 
nonuniform strain, which can change 
the Gaussian curvature of the sheet (i.e., 
shape morphing).[12] A flat sheet (zero 
Gaussian curvature) can be morphed into 
a spherical (positive Gaussian curvature) 
or saddle (negative Gaussian curvature) 
surface. As an example, hydrogel is 
widely used for this purpose, as it under-
goes large swelling that can be modu-
lated by concentration,[12c] crosslinking 
density[2a,13] and temperature,[6a] and 
nonuniform swelling can be achieved by 
varying these parameters laterally.

In addition to the abovementioned 
actuation strategies, geometrical design 
is critical for assembling 2D sheets into 
desired 3D structures.[14] A promising 
design strategy is inspired by origami, an 
ancient art of paper folding. The crease 
patterns for desired 3D shapes have been 
proposed.[15] However, origami deals with 

intact and nonstretchable sheets, thus it can only generate 
surfaces with zero Gaussian curvature.[16] To overcome this 
limitation and realize nonzero Gaussian curvatures, slits and 
perforations can be introduced to the 2D sheets prior to folding, 
which is known as kirigami.[17] In previous studies, origami/
kirigami structures were typically folded via the first or second 
actuation strategy.[18]

Here, we report a new approach for shape morphing of  
2D composite sheets guided by origami/kirigami design  
rules and induced by laterally nonuniform strain.  
A heat shrinkable polymer sheet is used as the actu-
ating material. The origami/kirigami patterns are created  
by bonding paperboard panels on selected areas of the  
polymer sheet, which leads to nonuniform lateral  
shrinkage of the polymer sheet upon heating. The laterally 
nonuniform strain can in turn change the Gaussian  
curvature. In the first configuration, an angular shrinkage 
gadget is created by constraining two radii of a circular  
polymer sector, resulting in an angular defect (positive 
Gaussian curvature) around a vertex, which is harnessed 
to fold origami structures. A single gadget is used to fold a 
single crease, while multiple gadgets are used to fold multiple 
creases in a parallel manner. In the second configuration, 
a minimal surface gadget is created by constraining all the 
edges of a quadrilateral polymer sheet, which transforms 
the polymer sheet into a saddle surface (negative Gaussian  
curvature). The minimal surface gadget is then harnessed 
to fold flat origami loops into step structures. Finally,  
2D tessellation of the origami loops is transformed into a  
3D checkerboard pattern.

Shape Morphing

1. Introduction

Transforming 2D sheets into 3D objects is an emerging topic 
with many applications, including reconfigurable devices,[1] 
self-folding robotics,[2] smart textiles,[3] and containers for 
drug delivery.[4] Several strategies have been developed to 
actuate the transformation.[5] In the first strategy, a 2D sheet 
is bent into a 3D structure due to varying strain across the 
thickness.[6] The varying strain can be induced by unsymmet-
rical heating[7] or swelling[8] in a monolayer sheet of respon-
sive materials, or more commonly, by mismatch strain in a 
bilayer sheet.[6a,9] Depending on the strain anisotropy in the 
two layers, the bilayer sheet can be bent into a cylindrical, 
spherical, or saddle surface.[6b] Of note is that the spherical 
or saddle surface is stable only at small mismatch strain and 
tends to switch to the cylindrical surface at large mismatch 
strain.[10] In the second strategy, 3D structures are assem-
bled from 2D precursors through controlled compressive 
buckling.[1b,11] In this case, the 2D precursors do not need to 
be responsive, as buckling is triggered by external actuators. 
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2. Results and Discussion

2.1. Folding Using Angular Shrinkage Gadget

Without constraint, the polystyrene (PS) sheet shrinks equibi-
axially upon heating above the glass transition temperature 
(≈150 °C), undergoing a similarity transformation, i.e., the size 
is reduced while the shape is preserved. The sheet remains flat 
(zero Gaussian curvature) after shrinking. With constraint, the 
uniform shrinkage is distorted. Figure 1 shows a case when 
two radii of a PS sector were constrained by two rigid bars. The 
two radii cannot shrink or bend but can rotate. The PS sector 
still tended to shrink upon heating. As a result, two rigid bars 
rotated toward each other to reduce the bounding area. The 
(central) angle of the sector shrank upon heating, resulting in 
an angular shrinkage gadget.

Sectors of different initial angles were studied. Figure 1A 
shows the optical images before and after shrinking. Figure 1B 

shows the shrunk angle as a function of the initial angle. 
Approximately, shrunk angle increased linearly with the ini-
tial angle with the slope of 1/3. This relationship will be used 
as a guideline in designing the following structures. The sim-
ulated shrunk angles using finite element analysis (FEA) were 
shown in Figure S1 in the Supporting Information, in good 
agreement with the experimental results. In addition, the 
flat PS sheet was morphed into a saddle surface (Figure S2, 
Supporting Information), which is a minimal surface (with 
minimal surface area for given boundary conditions).[12a] It 
is of interest to note the factor of 1/3 between the shrunk 
angle and the initial angle. The factor of 1/3 is empirical and 
approximate according to our experimental observations and 
difficult to quantify analytically. Indeed this factor depends 
on the biaxial strain in the prestrained PS sheet.

Next, this angular shrinkage gadget was utilized to create 
angular defect and change the Gaussian curvature of a flat 
sheet. Note that on a flat surface, which has zero Gaussian cur-
vature everywhere, the angle around a point is2π. If a sector 
is cut out of a circular disk and the exposing edges are joined 
together, a cone can be obtained. It has an angular defect and 
a positive Gaussian curvature on the vertex. Moreover, the lat-
eral surface is uniformly curved since the stiffness is uniform. 
In this work, instead of removing a sector, the angular defect 
was generated by shrinking a sector. In addition, the curving 
deformation was localized at predefined creases following the 
origami approach. Note that in folded origami structures (e.g., 
polyhedrons) with sharp edges and vertices, Gaussian curva-
ture is defined as angular defect around the vertices.[19]

Figure 2 shows folding of a single crease using an angular 
shrinkage gadget. Figure 2A shows the schematic representa-
tion of the folding. The initial state is a flat composite sheet, 
composed of three sectors: two paperboard sectors (in red) and 
one PS sector (in blue). For each paperboard sector, two paper-
board panels are glued on both sides of the PS sheet. The two 
paperboard sectors are hinged with a soft crease that is free to 
rotate. The Gaussian curvature is zero for this flat sheet. In the 
flat state, the structure can be fully characterized by two inde-
pendent parameters: angle β of one paperboard sector and angle 
α of the PS sector. Angle of the other paperboard sector can be 
calculated by subtracting α and β from 2π. Upon heating, the PS 
sector shrinks its angle and generates an angular defect (defined 
as 2π minus the sum of total angles around a vertex). A cone is 
then formed, which is accompanied by folding of the paperboard 
sectors along the crease. There exists a relationship between the 
angular defect and the folding angle, which is defined as the 
dihedral angle (θ) between the two paperboard sectors. When 
the PS sector angle shrinks to α/3 (corresponding to an angular 
defect of 2α/3), it folds the paperboard sectors to a certain dihe-
dral angle(θ). This can be solved via spherical trigonometry,[16a] 
as shown in Figure 2A. The structure is drawn in a sphere of unit 
radius. The sector angle is equal to the arc length of a big circle 
on the surface of the sphere, while the dihedral angle is equal to 
the angle formed by arcs on the surface of the sphere. The dihe-
dral angle(θ) and the three sector angles (α/3,  α + β − π, π − β) 
are related by spherical law of cosines

cos( /3) cos( )cos( )
sin( ) sin( )cos( )

α α β π π β
α β π π β θ

= + − −
+ + − −

	 (1)
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Figure 1.  Angular shrinkage gadget. A) Images showing the angular 
shrinkage with different initial angles. Top: before shrinking; bottom: 
after shrinking. Scale bar: 30 mm. B) Plot of the shrunk angle as a func-
tion of the initial angle. A linear approximation (y = x/3) is included for 
comparison.
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The dihedral angle (θ) can be obtained by solving this 
equation. Figure 2B shows the contour plot of θ as a function 
of α and β. It can be seen that only certain combinations of  
(α, β) can lead to folding. For example, when α + β = π, folding 
of the crease does not change the PS sector angle. The PS 
sector angle is constrained by the origami pattern. No angular 
defect is generated and no folding occurs.

From the contour plot, the maximum dihedral angle (θ = π/3) 
can be obtained at α = π, β = π/2. The dihedral angle is sym-
metric with respect to β at α = π. The accessible dihedral angle 
can be fully captured by changing β on (0, π/2) while keeping 
α = π. Figure 2C shows the experimental results of four dihedral 
angles between β = π/4 and β = π/2, with α = π. Figure 2D plots 
as a function β of at α  = π. The experimental results and the 
analytical solution agree reasonably well. The slight deviation 
might be attributed to the finite stiffness of the crease (neglected 
in this work), which depends on the relative orientation between 
the crease and the angular shrinkage gadget (i.e., angle β).

For those creases that can be folded independently, one 
crease corresponds to one degree of freedom and can be deter-
ministically folded by one gadget. Thus, multiple creases could 
be deterministically folded when gadgets of equal number 
are used. Figure 3A shows the schematic representation of 
folding truncated pyramids. Truncated triangular pyramid 
was used as an example. Around each vertex, there are three 
rigid paperboard sectors (in red) and one PS sector (in blue). 

Shrinkage of the PS sector creates an angular defect (2α/3) at 
each vertex. A cone is then formed, accompanied by folding of 
the paperboard sectors along the creases. The whole structure 
is folded in a deterministic manner. Due to symmetry of the 
structure, all creases are folded to the same dihedral angle.

The paperboard sector angle β1 is equal to the interior angle 
of the base, which can only take discrete values

2 /1 nβ π π= − 	 (2)

where n is the number of sides of the base (e.g., n = 3, 4, 5, 6 
as shown in Figure 3). The other two paperboard sectors are 
identical, whose angle can be calculated by subtracting β1 and 
α from 2π, i.e.

(2 )/22 1β π α β= − − 	 (3)

Folding angle is defined as the dihedral angle (θ) between 
the lateral surface and the base of the folded structure (a trun-
cated pyramid). Again, around each vertex, the angular defect 
(2α/3) is related to the dihedral angle(θ). The calculation can be 
found in Figure S3 in the Supporting Information. θ as a func-
tion of α is plotted in Figure 3B. The dihedral angle θ decreases 
with increasing α, indicating that the bigger the angular defect, 
the higher the degree of folding. With the same angular defect, 
dihedral angles are different for different truncated pyramids. 

Adv. Funct. Mater. 2018, 28, 1802768

Figure 2.  Folding of a single crease using a single angular shrinkage gadget. A) Schematic representation of the folding and related parameters. Red: 
paperboard sector; blue: PS sector. B) Contour plot of the dihedral angle (θ) as a function of the sector angles(α, β). C) Images showing the folding of 
a single crease with fixed α (α = π) and varying β. Top: before folding; bottom: after folding (side view). Scale bars: 30 mm. D) Plot of θ as a function 
of β (α = π).
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The dihedral angle increases in the order of hexagon, pentagon, 
square, and triangle as the base. Figure 3C shows the optical 
images of truncated pyramids with different bases and different 
angular defects.

Another way to harness the angular shrinkage gadget is 
shown in Figure 4. Around the central vertex there are alter-
nated PS sectors and paperboard sectors. Again, shrinkage of 
the PS sectors generates an angular defect around the vertex, 
transforming the flat disk into a cone. The paperboard sectors 
remain flat, while the PS sectors are curved. The angular defect 
is determined by the total angle of the PS sectors. A larger 
angular defect leads to a sharper cone.

2.2. Folding Using Minimal Surface Gadget

By now, we have demonstrated two ways in which a flat com-
posite sheet can be morphed into a surface with positive 
Gaussian curvature by creating angular defect. A common 

feature in both ways is that shrinkage occurs in the periph-
eral areas, while the central area is constrained. A natural 
question would be how the shape changes under the opposite 
condition,, i.e., the center shrinks while the periphery is con-
strained. A closely related scenario is a constrained center with 
an expanding periphery. In that case, the periphery is wrinkled, 
generating a saddle surface (negative Gaussian curvature).[12c,20] 
Here, we propose an alternative approach—a shrinking center 
with constrained periphery—and hypothesize that the sheet is 
morphed to a saddle surface.

Figure 5 shows the shape morphing of a PS square sheet, 
whose four edges were constrained by four rigid bars. The four 
edges cannot shrink or bend. However, the PS still tended to 
shrink upon heating. This can only be accommodated by rota-
tion of the four edges and shrinkage of the angle at the four 
corners. Both experimental and FEA results after the shrinking 
are shown, which agree very well. Due to symmetry of the 
structure, the four corner angles shrank to the same value. 
The bounded PS sheet was morphed into a saddle surface 

Adv. Funct. Mater. 2018, 28, 1802768

Figure 3.  Folding of multiple creases using multiple angular shrinkage gadgets. A) Schematic representation of the folding and related parameters.  
B) Plot of the dihedral angle (θ) as a function of the sector angle(α). Four base shapes (triangle, square, pentagon, and hexagon) are shown. C) Images 
showing the folding of multiple creases with different base shapes (two triangles, two squares, one pentagon, and one hexagon). Top: before folding; 
middle: after folding (top view); bottom: after folding (perspective view). Scale bars: 30 mm.
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(minimal surface). The structure is denoted as a minimal sur-
face gadget. Note that two diagonals of the square shrink to 
about 37% of its initial length.

The minimal surface gadget can fold four edges simulta-
neously, which enables folding of origami loops surrounding 
it. Figure 6 shows the folding of three different origami loops 
(square, rhombic, and square twist) and their tessellations. The 
structures were inspired by the kirigami pattern developed by 
Sussman et al.[17c] In the center, there was a PS square or rhombic, 
which was surrounded by eight paperboard panels, arranged into 
a loop with eight creases. The four sides of the PS panel were 
effectively constrained by four rigid paperboard panels, making 
a minimal surface gadget. Upon heating, the gadget folded the 
origami loop into a step structure. Column B shows top view of 
the folded structures. For a single origami loop, there are two 
degenerate folded states, which are schematically illustrated in 
column B. One pair of opposite corners pops up, while the other 
pair pops down. The two degenerate configurations are sym-
metrically equivalent to each other, i.e., one configuration can be 

converted to the other via symmetric operation. For square and 
square twist, one configuration can be converted to the other by 
90° rotation. For rhombic, a reflection through the flat surface 
(mirror plane) can convert one state to the other.

The tessellations are shown below the corresponding ori-
gami loops. It can be seen that each loop had four neighbors 
surrounding it, each of which shared a side (three paperboard 
panels) with it. Adjacent origami loops are folded into different 
configurations, as required by the shared side. Once the folded 
configuration of one origami loop is given, the configurations 
of the other four adjacent loops can also be determined. Upon 
heating, all origami loops were folded in a parallel manner. A 2D 
pattern was thus transformed into a 3D checkerboard pattern.

In both the angular shrinkage gadget and the minimal 
surface gadget, biaxial shrinkage of an otherwise uncon-
strained, heat shrinkable polymer sheet is converted to angular 
shrinkage under predefined constraints, which is harnessed to 
fold origami structures. In the case of the angular shrinkage 
gadget, shrinkage is allowed in the circumferential direction, 

Adv. Funct. Mater. 2018, 28, 1802768

Figure 4.  Folding of cones using multiple angular shrinkage gadgets. Top: before folding; middle: after folding (top view); bottom: after folding  
(perspective view). Angular defect of each folded cone is shown below the optical images. Scale bars: 30 mm.

Figure 5.  Minimal surface gadget. Perspective, top and side view images of the folded structure are shown. Perspective view of the FEA result is 
included for comparison. Scale bar: 30 mm.
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but constrained in the radial direction. More spe-
cifically, in the radial direction, the two edges are 
totally constrained and as a result the sector in 
between is partially constrained. In the case of 
the minimal surface gadget, where four angles 
shrink simultaneously, shrinkage is still allowed 
in the circumferential direction as in the case of 
the angular shrinkage gadget. But shrinkage is 
further constrained in the radial direction in the 
sectors between the four edges due to symmetry, 
which leads to shrinkage along both diagonals.

3. Conclusion

We have demonstrated a new approach to fold 
origami/kirigami structures, based on Gaussian 
curvature change induced by laterally nonuni-
form shrinkage. Flat origami/kirigami patterns 
were embedded into a heat shrinkable polymer 
sheet, making a composite sheet. The composite 
sheet experienced laterally nonuniform shrinkage 
upon heating, which changed the Gaussian cur-
vature of the sheet and transformed the flat sheet 
into a 3D curved structure. The shape morphing 
was guided by the origami/kirigami patterns. 
Depending on the position of origami/kirigami 
patterns, curved surfaces with positive or nega-
tive Gaussian curvature can be obtained. When 
the origami/kirigami patterns were placed in the 
central area, shrinkage of the polymer sheet in 
the peripheral area can create 3D surfaces with 
positive Gaussian curvature. Examples included 
cones and truncated pyramids. On the other 
hand, when the polymer sheet was surrounded 
by an origami loop, saddle surfaces (with nega-
tive Gaussian curvature) can be obtained. The 
flat origami loop was folded into a step structure. 
Furthermore, tessellation of the origami loops 
was transformed into a 3D checkerboard pattern. 
This work represents a new approach to morph 
sheet structures, taking advantage of both shape 
morphing in soft materials and origami folding 
in rigid structures. The design approach can be 
applied to other responsive or active materials as 
long as the biaxial shrinkage is constrained with 
the patterns demonstrated in this work.

4. Experimental Section
Sample Preparation and Folding Experiments: The heat 

shrinkable polymer sheet was made of prestrained PS 
(Grafix Shrink Film) with the thickness of 0.25 mm. The 

B) Top view of the folded state. C) Perspective view of the 
folded state. Each origami loop can be folded into two 
degenerate states, which is schematically shown on the 
right side of column (B). Bright color indicates pop-up 
while dark color indicates pop-down. Scale bars: 30 mm.

Figure 6.  Folding of origami loops using minimal surface gadgets. Three different origami 
loops and their tessellations (below the corresponding loop) are shown. A) Flat state.  
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PS sheet shrinked in-plane equibiaxially to 50% of initial dimensions 
upon heating (≈150 °C). The rigid bars used for constraining PS sheet 
were metal wires (glued on the edges of the PS sheet). The origami 
patterns were fabricated by gluing paperboard panels (cut from Staples 
file folder) on selected areas of the PS sheet. The paperboard panels 
were glued on both sides of the PS sheet using superglue (Loctite 
Liquid Professional Super Glue 20-Gram Bottle). A gap was left between 
adjacent panels to define the crease. The areas glued with paperboard 
panels cannot deform. After the glue was fully cured, samples were put 
in the oven for folding.

Finite Element Simulation: 3D FEA of the folding of PS sheets was 
carried out in Abaqus 6.14. The radial structures with an initial angle 
ranging from 30° to 180° were modeled with a radius of 30  mm and 
thickness of 0.25  mm, in accordance with the experiments (Figure 1). 
Both straight sides were constrained via the multipoint constrain method 
throughout the simulations. The square structure was modeled with 
a side length of 60  mm and thickness of 0.25  mm (Figure 5). Similar 
to the previous case, all sides were constrained. Four-node curved 
shell with reduced integration elements (S4R) was used to model PS. 
Isotropic linear elastic behavior was assumed with Young’s modulus of 
3 GPa and Poisson’s ratio of 0.4. A thermal strain of -0.5 was set, while 
a small perturbation force was applied at the center of both structures in 
order to trigger out-of-plane buckling.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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