NC STATE UNIVERSITY

Department of Mechanical and Aerospace Engineering Course Instructor: Dr. Felix Ewere TA: Auston Gray Customers: Kevin Gitushi, Michael Hughes

Mission Overview

Purpose: The purpose of this project is to design and fabricate a modular scalable fixed-wing Unmanned Aerial System (UAS) that will satisfy the NC Forest Service's needs which include forest condition monitoring and mapping, and emergency burn response. **Objective:**

- The Aircraft must be capable of hand launch
- **Operational after recovery**
- Capable of 30 min loiter
- Setup time of 20 min
- Aircraft capable of live flight video streaming
- Aircraft capable of controlled landing

Forest Management

Response

Functional Block Diagram

- Each component that was used is shown above, broken down into its respective subsystem.
- The connections between each subsystem/components are displayed as arrows, colored coded by connection type.

Team Wolf Wings

Project Howling Cowl-22

Aerospace Engineering Capstone Senior Design 2021-2022 Department of Mechanical and Aerospace Engineering Carson Almeida, Paige Collins, Thomas Deal, Karl Prewo, Hunter Staniewicz, Mark Shanahan

Final Prototype

The HC-22 in is shown below with dihedral wing sections mounted.

Forest Management	Parameter
Alpha Trim	2.95579 deg
Coefficient of Lift	0.5357
Coefficient of Drag	0.0314
Static Margin	22.8066%
Center of Gravity Location	3.27 in from the leading edge
Neutral Point Location	5.204 in from the leading edge
Operating Empty Weight	~6.358
Takeoff Weight	~9.268
Total Payload Volume	42.2 in or 0.6948 U

Design Solution

- The UAS consisted mostly of plywood, with balsa wood sheeting over airfoil surfaces.
- The wing spars were I-beams made from wooden dowels. The nose pieces were cut with the waterjet.
- The UAS was then ultra-coated.
- Dihedral panels were made to complete the forest management mission.

- of test flights.
- The first trail resulted in about 45 seconds of flight, but aircraft was forced to land due to failures in one of the ailerons.
- Repairs were needed on the nose of the aircraft, landing gear, and control surfaces.
- In the second test flight, two minutes of flight was recorded but failure in the servos resulted in a crash.
- of the vehicle.
- Further iterations of the plane would include improvements to the digital function of the servos and full autopilot features.

Manufacturing

Manufacturing began in January 2022.

Testing

The aircraft was prepped and flown on two separate days

The aircraft performed as intended, allowing for full control

