Kevin Lyons


  • 919-515-5293
  • Engineering Building III (EB3) 3296
  • Visit My Website

Dr. Lyons is interested in chemically reacting flows, imaging measurement in combustion experiments, flow control for propulsion applications, manipulation of reaction zones with electric and magnetic fields, industrial burner design, flame stabilization, spray combustion, turbulent mixing, and flame threats to fire fighters and soldiers. He has been on the NCSU-MAE faculty since receiving his Ph.D. from Yale University in 1994.

At the undergraduate level he teaches Engineering Thermodynamics I and II (MAE 201 and 302) . 201 is the students’ first class in thermodynamics and the material presented related to property evaluation, phase diagrams, the 1st Law of Thermodynamics and an introduction to engineering devices. Lyons places a particular emphasis on these background fundamentals for the development of strong problem-solving skills. MAE 302 deals with topics in engine cycles, heating, air conditioning, combustion, high speed flow and an introduction to statistical thermodynamics. Additionally, Lyons is enjoying teaching MAE 412, which is a project course in thermal-fluids. While part of the course is devoted to pumps and heat exchangers, much of the course is directed at team project work in thermo-fluids, involving both standard as well as emerging topics of interest.

At the graduate level, he sometimes teaches Advanced Engineering Thermodynamics (MAE 501) and Statistical Thermodynamics (MAE 702). MAE 501 is a course that investigates thermodynamics from a more fundamental perspective than that encountered in typical undergraduate thermodynamics. MAE 702 examines the meaning of energy and temperature at the microscopic-level and develops the connection between microscopic and macroscopic thermophysics. Special topics courses in research areas can be offered depending on demand. As a faculty advisor, Lyons thinks it is important for his students to become independent investigators, appreciating the importance that comes from formulating experiments that are simple, yet telling. He provides his students the freedom to follow their own directions, with an eye toward open-ended research and discovery. These types of skills will serve them well whether destined for careers in industrial research, academia or government laboratories.


Ph.D. 1994

Mechanical Engineering

Yale University

M.Phil. 1992

Mechanical Engineering

Yale University

M.S. 1990

Mechanical Engineering

Yale University

B.E. 1988

Mechanical Engineering

Manhattan College

Research Description

Dr. Lyons' long-term research goals are to acquire and interpret experimental data for the improvement of our understanding of combusting flows (laminar, transitional and turbulent gaseous jets and spray flames) and to impact practical combustion system performance through active and passive control of fluids and flames. Presently, Lyons is 1) performing flame propagation studies in turbulent jets in various configurations, 2) assessing flame threats related to the development of protective gear (in collaboration with TPACC in the College of Textiles) and 3) conducting ionic-flow experiments for micro-electronics cooling and combustion control and 4) studying flame dynamics in heated co-flow jets flame (in collaboration with INSA Lyon/University of Lyon).


The stabilization of partially-premixed jet flames in the presence of high potential electric fields
Kribs, J. D., Shah, P. V., Hutchins, A. R., Reach, W. A., Muncey, R. D., June, M. S., Saveliev, A., & Lyons, K. M. (2016), Journal of Electrostatics, 84, 1-9.
Lamige, S., Lyons, K. M., Galizzi, C., Kuhni, M., Mathieu, E., & Escudie, D. (2015), Combustion Science and Technology, 187(12), 1937-1958.
Effects of diluents on lifted turbulent methane and ethylene jet flames
Hutchins, A. R., Kribs, J. D., & Lyons, K. M. (2015), Journal of Energy Resources Technology, 137(3).
Experimental observations of nitrogen diluted ethylene and methane jet flames
Hutchins, A. R., Kribs, J. D., Muncey, R. D., Reach, W. A., & Lyons, K. M. (2014), (Proceedings of the ASME Summer Heat Transfer Conference - 2013, vol 2, ).
Assessment of stabilization mechanisms of confined, turbulent, lifted jet flames: Effects of ambient coflow
Hutchins, A. R., Kribs, J. D., Muncey, R. D., & Lyons, K. M. (2014), (Proceedings of the ASME Power Conference, 2013, vol 1, ).
Effects of hydrogen enrichment on the reattachment and hysteresis of lifted methane flames
Kribs, J. D., Hutchins, A. R., Reach, W. A., Hasan, T. S., & Lyons, K. M. (2014), (Proceedings of the ASME Power Conference, 2013, vol 1, ).
Burner lip temperature and stabilization of a non-premixed jet flame
Lamige, S., Lyons, K. M., Galizzi, C., Andre, F., Kuhni, M., & Escudie, D. (2014), Experimental Thermal and Fluid Science, 56, 45-52.
Skin burn translation model for evaluating hand protection in flash fire exposures
Hummel, A., Barker, R., & Lyons, K. (2014), Fire Technology, 50(5), 1285-1299.
Effects of electric fields on stabilized lifted propane flames
Hutchins, A. R., Reach, W. A., Kribs, J. D., & Lyons, K. M. (2014), Journal of Energy Resources Technology, 136(2).
Nitrogen-diluted methane flames in the near-and far-field
Kribs, J., Moore, N., Hasan, T., & Lyons, K. (2013), Journal of Energy Resources Technology, 135(4).

View all publications via NC State Libraries

View publications on Google Scholar


RESEARCH AREA 1: MECHANICAL SCIENCES, 1.4 Propulsion and Energetics Investigations of Turbulent Lifted Flame Stabilization in Heated and Vitiated Coflows
US Army - Army Research Office(4/01/16 - 3/31/17)
Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control
US Army - Army Research Office(5/01/12 - 5/31/16)
Investigation of Burn Threats at the Finger Scale Using an Instrumented Manikin and the Impact of Design of Protective Gloves For the Soldier
US Army - Soldier Systems Center (Natick)(3/31/10 - 8/31/11)
Development of an Instrumented Thermal Manikin Head for Characterizing the Thermal Protective Performance of Military Head Gear in Fire Environments
US Army - Soldier Systems Center (Natick)(7/22/08 - 12/31/09)
Flame Propagation and Blowout in Hydrocarbon Jets: Experiments to Understand the Stability and Structure of Reaction Zones
US Army - Army Research Office(6/01/08 - 5/31/12)