Cheryl Xu

Associate Professor

  • 919-515-5271
  • Engineering Building III (EB3) 3156
  • Visit My Website

Dr. Chengying “Cheryl” Xu’s research interests are advanced manufacturing of multifunctional materials, sensor design and manufacturing in harsh environments, process optimization, sensor-based health monitoring and control through artificial intelligence (AI). Dr. Xu is active in conducting research in the field of materials processing and advanced manufacturing and has attracted a high level of research funding. She joined in NC State University in 2018. She was an Assistant and Associate Professor at the University of Central Florida (2007-2013) and was an Associate Professor at Florida State University (2014-2018). She co-authored a textbook (Intelligent Systems: Modeling, Optimization and Control, CRC Press, 2008) and have published four book chapters. Dr. Xu chaired the 1st NSF National Wireless Research Collaboration Workshop in 2015 and serves as an Associate Editor of ASME Transactions, Journal of Micro- and Nano- Manufacturing in 2015-2019.

Dr. Xu’s research focus is manufacturing of multifunctional ceramic materials, especially on their electrical/dielectric, mechanical, and thermal properties, and how to manufacture such materials for high temperature applications. Such studies provide great flexibility in design and manufacturing and meet a wide range of application requirements, such as high temperature sensor design, electromagnetic (EM) absorption material, high temperature radio frequency (RF) transparent materials, metamaterial designs for extreme condition applications, etc. The capabilities to effectively integrate these technologies and materials into applicable devices are critical for industry and the federal government laboratories. Her research interests have been in the field of advanced manufacturing, and to apply the knowledge and experience to help bring engineering components and devices for next generation energy, environmental, aerospace and defense applications, with specific focuses on the following aspects:

  • Research and development of novel multifunctional materials with desirable structures/functionalities;
  • Developing practical/robust manufacturing processes to transform new materials into engineering components and devices;
  • Understanding the fundamental physics and chemistry of advanced manufacturing processes;
  • Integrating artificial intelligence / machine learning into manufacturing processes.

Education

Ph.D.

Mechanical Engineering

Purdue University

M.S.

Mechanical Manufacturing and Automation

Beijing University of Aeronautics and Astronautics

B.S.

Electromechanical Engineering

Qingdao University

Honors and Awards

  • Naval Research Laboratory (NRL), Summer Faculty Fellowship, 2020
  • Air Force Research Laboratory (AFRL), Summer Faculty Fellowship, 2018
  • College, Research Excellence Award, Florida State University , 2017
  • University, Grant Assistant Program (GAP) Award, Florida State University, 2017
  • Air Force Research Laboratory (AFRL), Summer Faculty Fellowship, 2016
  • University, Grant Assistant Program (GAP) Award, Florida State University, 2016
  • Institute of Electrical and Electronics Engineers (IEEE) Education Society, Teaching Award, 2015
  • University, Research Incentive Award, University of Central Florida, 2013
  • University, Teaching Incentive Award, University of Central Florida, 2012
  • Office of Naval Research (ONR), Young Investigator Award, 2011
  • Society of Mechanical Engineers (SME), Outstanding Young Manufacturing Engineer Award, 2011
  • Oak Ridge Associated University Visiting Industrial Scholar Award, 2008

Publications

Electrical Conductivity and Structural Evolution of Polymer Derived SiC Ceramics Pyrolyzed From 1200°C to 1800°C
Chowdhury, M. A., Wang, K., Jia, Y., & Xu, C. (2020), Journal of Micro and Nano-Manufacturing. https://doi.org/10.1115/1.4046191
Aligned carbon nanotube/carbon (CNT/C) composites with exceptionally high electrical conductivity at elevated temperature to 400 degrees C
Jia, Y., Yang, J., Wang, K., Chowdhury, M. A. R., Chen, B., Su, Y., … Xu, C. (2019), MATERIALS RESEARCH EXPRESS, 6(11). https://doi.org/10.1088/2053-1591/ab4385
Multifunctional Hybrid Composite for Thermal Protection of Carbon Fiber Reinforced Polymers (CFRPS) in Aerospace Applications
Ajayi, T., Kim, K., Liu, J., Nickerson, B., & Xu, C. (2019), SAMPE 2019 - Charlotte, NC. Presented at the SAMPE 2019 - Charlotte, NC. https://doi.org/10.33599/nasampe/s.19.1367
Wide-Band Tunable Microwave-Absorbing Ceramic Composites Made of Polymer-Derived SiOC Ceramic and in Situ Partially Surface-Oxidized Ultra-High-Temperature Ceramics
Jia, Y., Chowdhury, M. A. R., Zhang, D., & Xu, C. (2019), ACS APPLIED MATERIALS & INTERFACES, 11(49), 45862–45874. https://doi.org/10.1021/acsami.9b16475
A hybrid ceramic-polymer composite fabricated by co-curing lay-up process for a strong bonding and enhanced transient thermal protection
Ju, L., Yang, J., Hao, A., Daniel, J., Morales, J., Nguyen, S., … Xu, C. (2018), Ceramics International, 44(10), 11497–11504. https://doi.org/10.1016/j.ceramint.2018.03.211
Wireless Temperature Sensor for High Temperature Environments (up to 1000C) using RF Techniques with 0.5 meter Sensing Distance
Xu, C., & Daniel, J. (2018). , . Presented at the 41th Annual Conference on Composites, Materials, and Structures, Cocoa beach, FL.
Effect of Processing Conditions on Electric and Dielectric Properties of Polymer-Derived SiC Ceramics
Xu, C., & Wang, K. (2017). , . Pittsburgh, PA: Materials Science & Technology.
Enhanced cyclic oxidation resistance through the self-healing of segmented cracks using nano-Al2O3/Ni-20 wt%Al particles in laser re-melted thermal barrier coatings
Fan, Z., Wang, K., Dong, X., Wang, R., Duan, W., Mei, X., … Xu, C. (2017), Materials Letters, 201, 156–160. https://doi.org/10.1016/j.matlet.2017.04.116
Metamaterial Enabling RF Transparency – Ceramic Composite Design for High Temperature Application
Macdonald, J., & Xu, C. (2017). , . Presented at the National Space and Missile Materials Symposium, CA.
Non-Destructive Testing of Composite Materials at High Temperature (2000oC)
Xu, C., & Peebles, J. (2017). , . Presented at the Material Measurements Working Group, Dayton, OH.

View all publications via NC State Libraries

View publications on Google Scholar

Grants

Accelerating Delivery of a Secure Hypersonic Sensor Network
Air Force Research Laboratory (AFRL)(4/09/20 - 6/06/20)
MRI: Acquisition of a Large High-Temperature Vacuum Press for Advanced Materials Research, Manufacturing and Training at NC State University
National Science Foundation (NSF)(8/01/20 - 7/31/23)
A Hybrid Multi-functional Composite Material by Co-curing Lay-up Process for Enhanced Thermal/Chemical Stability and Surface Durability
US Navy-Office Of Naval Research(11/01/18 - 8/31/21)
Manufacturing Hybrid Multi-functional Composite Skin Materials via Standard Prepreg Lay-up Process
US Navy-Office Of Naval Research(7/01/18 - 12/04/18)