Cheryl Xu
Associate Professor

- 919-515-5271
- cxu24@ncsu.edu
- Engineering Building III (EB3) 3156
- Visit My Website
Dr. Chengying “Cheryl” Xu’s research interests are advanced manufacturing of multifunctional materials, sensor design and manufacturing in harsh environments, process optimization, sensor-based health monitoring and control through artificial intelligence (AI). Dr. Xu is active in conducting research in the field of materials processing and advanced manufacturing and has attracted a high level of research funding. She joined in NC State University in 2018. She was an Assistant and Associate Professor at the University of Central Florida (2007-2013) and was an Associate Professor at Florida State University (2014-2018). She co-authored a textbook (Intelligent Systems: Modeling, Optimization and Control, CRC Press, 2008) and have published five book chapters. Dr. Xu chaired the 1st NSF National Wireless Research Collaboration Workshop in 2015 and serves as an Associate Editor of ASME Transactions, Journal of Micro- and Nano- Manufacturing in 2015-2019.
Dr. Xu’s research focus is manufacturing of multifunctional ceramic materials, especially on their electrical/dielectric, mechanical, and thermal properties, and how to manufacture such materials for high temperature applications. Such studies provide great flexibility in design and manufacturing and meet a wide range of application requirements, such as high temperature sensor design, electromagnetic (EM) absorption material, high temperature radio frequency (RF) transparent materials, metamaterial designs for extreme condition applications, etc. The capabilities to effectively integrate these technologies and materials into applicable devices are critical for industry and the federal government laboratories. Her research interests have been in the field of advanced manufacturing, and to apply the knowledge and experience to help bring engineering components and devices for next generation energy, environmental, aerospace and defense applications, with specific focuses on the following aspects:
- Research and development of novel multifunctional materials with desirable structures/functionalities;
- Developing practical/robust manufacturing processes to transform new materials into engineering components and devices;
- Understanding the fundamental physics and chemistry of advanced manufacturing processes;
- Integrating artificial intelligence (AI) / machine learning (ML) into manufacturing processes.
Education
Mechanical Engineering
Purdue University
Mechanical Manufacturing and Automation
Beijing University of Aeronautics and Astronautics
Electromechanical Engineering
Qingdao University
Honors and Awards
- Fellow, American Society of Mechanical Engineers (ASME), 2020
- Naval Research Laboratory (NRL), Summer Faculty Fellowship, 2020
- Air Force Research Laboratory (AFRL), Summer Faculty Fellowship, 2018
- College, Research Excellence Award, Florida State University , 2017
- University, Grant Assistant Program (GAP) Award, Florida State University, 2017
- Air Force Research Laboratory (AFRL), Summer Faculty Fellowship, 2016
- University, Grant Assistant Program (GAP) Award, Florida State University, 2016
- Institute of Electrical and Electronics Engineers (IEEE) Education Society, Teaching Award, 2015
- University, Research Incentive Award, University of Central Florida, 2013
- University, Teaching Incentive Award, University of Central Florida, 2012
- Office of Naval Research (ONR), Young Investigator Award, 2011
- Society of Mechanical Engineers (SME), Outstanding Young Manufacturing Engineer Award, 2011
- Oak Ridge Associated University Visiting Industrial Scholar Award, 2008
Publications
- Complex impedance spectra of polymer-derived SiC annealed at ultrahigh temperature
- Jia, Y., Chowdhury, M. A. R., & Xu, C. (2020), JOURNAL OF THE AMERICAN CERAMIC SOCIETY. https://doi.org/10.1111/jace.17395
- Dielectric properties of polymer-derived ceramic reinforced with boron nitride nanotubes
- Jia, Y., Ajayi, T. D., & Xu, C. (2020), JOURNAL OF THE AMERICAN CERAMIC SOCIETY. https://doi.org/10.1111/jace.17301
- Electrical Conductivity and Structural Evolution of Polymer Derived SiC Ceramics Pyrolyzed From 1200°C to 1800°C
- Chowdhury, M. A., Wang, K., Jia, Y., & Xu, C. (2020), Journal of Micro and Nano-Manufacturing. https://doi.org/10.1115/1.4046191
- Aligned carbon nanotube/carbon (CNT/C) composites with exceptionally high electrical conductivity at elevated temperature to 400 degrees C
- Jia, Y., Yang, J., Wang, K., Chowdhury, M. A. R., Chen, B., Su, Y., … Xu, C. (2019), MATERIALS RESEARCH EXPRESS, 6(11). https://doi.org/10.1088/2053-1591/ab4385
- Multifunctional Hybrid Composite for Thermal Protection of Carbon Fiber Reinforced Polymers (CFRPS) in Aerospace Applications
- Ajayi, T., Kim, K., Liu, J., Nickerson, B., & Xu, C. (2019), SAMPE 2019 - Charlotte, NC. Presented at the SAMPE 2019 - Charlotte, NC. https://doi.org/10.33599/nasampe/s.19.1367
- Science and Engineering Courses, Theory and Practice: An Example
- Mousavinezhad, S., & Xu, C. (2019), 2019 ASEE Annual Conference & Exposition Proceedings. Presented at the 2019 ASEE Annual Conference & Exposition, Tampa, Florida. https://doi.org/10.18260/1-2--33254
- Teaching and Learning of Electrical and Computer Engineering Courses with High Mathematical Contents
- Mousavinezhad, S., Xu, C., & Tatar, E. (2019), 2019 ASEE Annual Conference & Exposition Proceedings. Presented at the 2019 ASEE Annual Conference & Exposition, Tampa, Florida. https://doi.org/10.18260/1-2--33343
- Wide-Band Tunable Microwave-Absorbing Ceramic Composites Made of Polymer-Derived SiOC Ceramic and in Situ Partially Surface-Oxidized Ultra-High-Temperature Ceramics
- Jia, Y., Chowdhury, M. A. R., Zhang, D., & Xu, C. (2019), ACS APPLIED MATERIALS & INTERFACES, 11(49), 45862–45874. https://doi.org/10.1021/acsami.9b16475
- A hybrid ceramic-polymer composite fabricated by co-curing lay-up process for a strong bonding and enhanced transient thermal protection
- Ju, L., Yang, J., Hao, A., Daniel, J., Morales, J., Nguyen, S., … Xu, C. (2018), Ceramics International, 44(10), 11497–11504. https://doi.org/10.1016/j.ceramint.2018.03.211
- Wireless Temperature Sensor for High Temperature Environments (up to 1000C) using RF Techniques with 0.5 meter Sensing Distance
- Xu, C., & Daniel, J. (2018). , . Presented at the 41th Annual Conference on Composites, Materials, and Structures, Cocoa beach, FL.
Grants
- Accelerating Delivery of a Secure Hypersonic Sensor Network
- Air Force Research Laboratory (AFRL)(4/09/20 - 6/06/20)
- MRI: Acquisition of a Large High-Temperature Vacuum Press for Advanced Materials Research, Manufacturing and Training at NC State University
- National Science Foundation (NSF)(8/01/20 - 7/31/23)
- Effect of Pyrolysis Temperature and Dopant on the Frequency-Dependent and Temperature-Dependent Electromagnetic Properties for Ultra-High Temperature Ceramics (UHTCs) Reinforced Ceramic Composites
- US Air Force - Office of Scientific Research (AFOSR)(11/15/20 - 11/14/21)
- A Hybrid Multi-functional Composite Material by Co-curing Lay-up Process for Enhanced Thermal/Chemical Stability and Surface Durability
- US Navy-Office Of Naval Research(11/01/18 - 8/31/21)
- Manufacturing Hybrid Multi-functional Composite Skin Materials via Standard Prepreg Lay-up Process
- US Navy-Office Of Naval Research(7/01/18 - 12/04/18)