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Common part failures in tube hydroforming include wrinkling, premature fracture, and
unacceptable part surface quality. Some of these failures are attributed to the inability to
optimize tribological conditions. There has been an increasing demand for the develop-
ment of effective lubricants for tube hydroforming due to widespread application of this
process. This paper presents an analytical model of the guiding zone tribotest commonly
used to evaluate lubricant performance for tube hydroforming. Through a mechanistic
approach, a closed-form solution for the field variables contact pressure, effective stress/
strain, longitudinal stress/strain, and hoop stress can be computed. The analytical model
was validated by the finite element method. In addition to determining friction coefficient,
the expression for local state of stress and strain on the tube provides an opportunity for
in-depth study of the behavior of lubricant and associated lubrication mechanisms. The
model can aid as a quick tool for iterating geometric variables in the design of a guiding
zone, which is an integral part of tube hydroforming tooling. �DOI: 10.1115/1.3090888�

Keywords: tribotest, friction coefficient, tube hydroforming, closed-form equations
Introduction
Tube hydroforming �THF� is a process of manufacturing intri-

ate shapes from tubular blanks. A hydraulic fluid is pressurized
nside the tube to a yield point, hence forcing the blank to con-
orm to the die shape. To increase shaping capability, the tubular
lank ends are usually fed toward the die cavity during pressur-
zation. Tube hydroforming has gained wide acceptance in the
utomotive and aerospace industries due to its advantages over
tamping, such as part consolidation, weight reduction, higher part
uality, fewer secondary operations, improved structural strength,
nd increased stiffness �1–4�.

Better understanding of tribological aspects in THF is impera-
ive for advancement of this technology. Common failures in THF
nclude wrinkling, premature fracture, and unacceptable part sur-
ace quality �5,6�. Some of these failures are attributed to either
tilizing ineffective lubrication/lubricant or failure to optimize tri-
ological conditions in the process design. THF can be catego-
ized into three friction zones: the guiding zone, the transition
one, and the expansion zone �Fig. 1�. Research has shown that
he three friction zones exhibit different states of stress �7,8�.
hese stress differences, which also imply different lubrication
echanisms, have led to the development of tribotests that can be

sed to study numerous tribological aspects in THF �8–12�. This
ncludes �a� screening of new lubricants that can perform well in
he three friction zones, �b� determination of friction coefficient
ia tribotest for use in numerical modeling, and �c� determination
f wear characteristics of the dies used.

Three variants of tribotests are normally used for the guiding
one, as shown in Fig. 2. All of these tests involve pressurizing
he tubular specimen to the required pressure level and pushing
he tube through a cylindrical die.

Variant I was originally developed at the University of Darms-
adt in collaboration with Schuler �8�. In this test, the normal load
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is measured via a load cell connected to the upper half of the die.
Applying Coulomb’s law, the interface friction coefficient can be
determined by Eq. �1�. Friction force, Ff, and normal load, Fc, are
both measured by load cells connected to the system. To facilitate
measurement of Fc, split die system is used.

� =
Ff

FC
�1�

This test requires careful design of the tooling to ensure that en-
ergy flow in the system components does not result in significant
errors in the measurement of the normal load.

Variant II was originally developed at the Engineering Research
Center for Net Shape Manufacturing at the Ohio State University
�13,14�. In this test, the vertical shaft that holds the tube is con-
nected to a load cell that measures the frictional force, Ff. Unlike
variant I, the normal load in this test is determined indirectly using
the internal pressure of the tube and the properties of the tube
material. The friction coefficient is determined by

� =
cFf

Pi�DiL
�2�

where Ff is the friction force, Pi is the internal pressure in the
tube, Di is the internal diameter of the tube, L is the effective
length of the tube, and c is a constant. Accurate determination of
c is critical. For higher pressure and tubular specimens with
higher diameter-to-wall thickness ratios, the value of c will ap-
proach 1.

Variant III, developed at the University of Paderborn �15,16�,
differs from variant II in how the friction force is determined. In
this test, two punches are connected to the tube ends. These
punches are connected to separate load cells to measure the fric-
tion force. This test allows emulation of the compression of a tube
being pushed through a die. The friction force is determined by
taking the difference in the friction loads measured by the two
load cells. The friction coefficient can be determined by Eq. �3�.

The test assumes that the internal pressure is equal to the pressure
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t the tool-workpiece interface. In reality, the interface pressure
ay vary drastically depending on the friction level and geometric

ariables.

� =
F1 − F2

Pi�DiL
�3�

hile all of the test variants discussed above can be used to rank
ubricants effectively, they cannot accurately determine interface
ressure distribution, which is a vital parameter for accurate de-
ermination of friction coefficient as well as for studying other
ribological aspects at the interface, such as the wear rate of the
ools.

Objectives and Approach
The objectives of this paper are to �a� establish a closed-form

olution that describes the principal stress state and strain state of
tube that is pushed through a die under internal pressure loading,

nd �b� formulate a closed-form solution that will facilitate deter-
ination of contact pressure at the tool-tube interface and in turn
ake possible to accurately determine interface friction based on
oulomb’s law. The derived equations should also be valuable in
esigning guiding zones where variations in the interface pressure
oading are a function of interface friction and the ratio between
ube length and tube diameter. The analytical model will also
ring about better understanding of the severity of deformation at
he tool-workpiece interface as the state of stress/strain varies
long the tube length.

The derivation commences by establishing expressions for the
rincipal stresses and strains acting on a plastically deformed tu-
ular material that is being pushed along a die under constant
nternal pressure Pi. These are radial stress �r, longitudinal stress
z, hoop stress �h, longitudinal strain �z, and radial strain �r.

Fig. 1 „a… Friction zone in
Fig. 2 Variants of guid
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Hoop strain, ��, is assumed to be zero because the tube is con-
strained by the die. Effective stress and effective strain are estab-
lished based on von Mises yield criteria, and the deforming tubu-
lar material is assumed to follow the power law, �̄=K�̄n, where �̄
is the flow stress, K is the strength coefficient, �̄ is the effective
strain, and n is the strain hardening exponent. After the state of
stress is established, the expression for interface friction assuming
Coulomb’s law is derived. The analytical model is verified by a
comparison with finite element results. Finally, the potential ap-
plications of the developed analytical model are discussed.

3 Stress and Strain Analysis of the Guiding Zone
Tribotest

3.1 Assumptions. The loading conditions in the guiding zone
where the material is fed toward the die cavity are dictated by the
internal pressure and axial feeding. The axial feeding is generally
done at a relatively lower fluid pressure as compared with the
calibration pressure, which is activated at the end of the THF
process. The loading process in the guiding zone can be consid-
ered to be approximately proportional along the tube length. Thus,
Hencky’s deformation theory can be applied in the analysis. It has
been shown that under proportional loading, the magnitudes of
resulting strains are path independent and reduce the governing
equations to Hencky’s total deformation theory �17�. Researchers
have also shown that the deformation theory of plasticity may be
used for a range of loading paths other than the proportion loading
without violating the general requirements for physical soundness
of plasticity theory �18,19�.

Varma et al. �20� found that by changing the loading conditions
during hydroforming, one can subject the tube to nonproportional
or proportional strain paths. In their studies, they found that non-

F; „b… typical THF tooling
ing zone tribotests
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roportional conditions occurs when fluid pressure along with
xial end feed is prescribed, whereas the proportional condition is
bserved when the fluid volume flow rate is specified in conjunc-
ion with axial contraction. In this study, Hencky’s deformation
heory is adopted. Various simplifications and assumptions used
hroughout the derivations are as follows.

• The tube is considered as a thin wall structure.
• Longitudinal stress through the thickness direction is as-

sumed to be uniform.
• Shear stress through the thickness direction induced by fric-

tion force is neglected.
• Tubular material is assumed to be isotropic.
• Throughout the process. the material is considered to be in

plastic state of deformation.

3.2 Stress Analysis. The scheme of the test is shown in Fig.
. Figure 4 shows the stress state on the element cut from the tube
all. In the guiding zone tribotest, the tube is first pressurized.
hen the yielding pressure is attained, the tube expands until it

stablishes contact with the die. The gap between the die and the
ube before pressurization starts is of the order of 1% of the tube
iameter.

Since the tube is pushed against a frictional surface, the internal
ressure Pi has forced the tube material to conform to the die
urface such that strain in the hoop direction ��=0, achieving
lane strain condition. Based on Hencky’s total deformation
heory �17� and the condition ��=0, Eq. �4� holds.

�� =
d�̄

d�̄
���� − ��Z + �r�/2�� = 0 ⇒ �� = ��Z + �r�/2 �4�

aking the balance of forces in the r-� and r-z plane, where the
lement width is 1 unit, Eqs. �5� and �6� can be obtained.

Fig. 3 Scheme of guiding zone tribotest
Fig. 4 Stresses acting on the eleme

ournal of Manufacturing Science and Engineering

aded 18 Mar 2009 to 152.1.69.171. Redistribution subject to ASME
�Piri� + �rr0� − 2��t sin
�

2
= 0

lim
�→0

sin��

2
� =

�

2
� ⇒ �� = ��rro + Piri�/t �5�

��Z + d�Z�2�ro�t + dt� − �Z�z�2�rot + � f2�rodz = 0 �6�
In the guiding zone tribotest, radial stress is compressive stress,
i.e., �r�0; thus the friction law can be expressed as

� f = �	�r	 = − ��r

�
d�Z

dz
=

�

t
�r −

�Z

dz

dt

t

dt

t
= d�r = − d�Z

� ⇒
d�Z

dz
=

�

t
�r + �Z

d�z

dz
�7�

In the guiding zone tribotest, there are two sections along the
longitudinal direction of the tube �Fig. 5�.

�a� Section I: The section near the tube end which is pushed
a by punch and characterized by the conditions that �z
��r and �z�0.

�a� Section II: The section near the free tube end character-
ized by the conditions that �r��z and �z�0.

In other words, section I will exhibit compressive longitudinal
stress while section II will exhibit tensile longitudinal stress. It
should be noted that the lengths l1 and l2 will vary based on the
location along the tube where �r=�z Details on the determination
of l1 and l2 are given in Sec. 3.4. Using Von Misses yield criteria,
the effective stress and strain under plane strain condition, ��=0,
can be expressed by Eqs. �8� and �9� for sections I and II, respec-

Fig. 5 Stress state of tube covered by sections I and II
nt: „a… r-� plane and „b… r-z plane
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ively. Flow stress of most metals used in metal forming closely
bey the power �̄=K�̄n. Substituting power law into Eqs. �8� and
9� leads to Eq. �10�.

�̄ =
1

�
��r − �Z�, �̄ = − ��z, � =

2

3

�8�

�̄ =
1

�
��Z − �r�, �̄ = ��z, � =

2

3

�9�

�r − �Z = K�n+1�z
n section I

�Z − �r = K�n+1�z
n section II �10�

quations �4�, �5�, �7�, and �10� give the inter-relationship of
tresses along the tube length. To have a complete description of
he state of stress along the tube, the longitudinal strain �z needs to
e determined. Also, hoop stress and longitudinal stress need to be
xpressed in terms of interface friction and other known quanti-
ies.

3.3 Derivation of Strain. The longitudinal strain �z in section
will be derived from Eqs. �4�, �5�, �7�, and �10�. The tube length
f section I is set to l1 and the location of �z equal to �r is set as
he original point of the z-axis, which lead to the boundary con-
itions �z=0 at z=0. The radial stress and longitudinal stress
iven in Eqs. �11� and �12� are obtained by combining Eqs. �4�,
5�, and �10�. Substituting the radius to thickness ratio, 	, and f as
function of 	 into Eq. �12�, Eq. �13� can be obtained.

�r = −

K�n+1�− �z�n + Pi

2ri

t

2ro

t
− 2

�11�

�z = −
� ro

t
−

1

2
�K�n+1�− �z�n + Pi

ri

t

ro

t
− 1

�12�

�z = − �fK�n+1�− �z�n + Pi� �13�

here ri / t= �ro− t� / t, 	=ro / t, and f = �	− 1
2

� / �	−1�.
As the tube is pushed through the die, the variable t �thickness

f tube� varies along the z-axis during deformation. Figure 6
hows the change in parameter f with respect to 	. It can be
bserved that when 	=5, and f =1.125. As 	 increases beyond 5,

f decreases asymptotically to 1. Thus for values of 	 greater than
, the variation in parameter f can be ignored. Thus, f can be
aken as a constant in the longitudinal direction.

Equation �14� is obtained by taking a derivative of �z pertaining
o Eq. �13� with respect to dz. Substituting Eqs. �7�, �11�, and �12�
nto Eq. �14�, Eq. �15� can be obtained. With axial load, the tube

−�z

Fig. 6 Relationship between f and �
hickness t will increase and can be computed as t= t0e from
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volume constant condition. Substituting thickness expression into
Eq. �15� and integrating it, Eq. �16� can be obtained.

d�z

dz
= −

d�fK�n+1�− �z�n + Pi�
dz

=

ro

t
−

1

2

ro

t
− 1

K�n+1n�− �z�n−1d�z

dz

�14�

� ro

t
−

1

2
�K�n+1n�− �z�n−1d�z

dz

= − � �

2t
K�n+1�− �z�n + Pi

�

t

ri

t
�

− �� ro

t
−

1

2
�K�n+1�− �z�n + Pi

ri

t
�d�z

dz
�15�



0

�z

−
� ro

t0e−�z
−

1

2
�K�n+1�n�− �z�n−1 + �− �z�n� + Pi

ri

t0e−�z

�

2t0e−�z
K�n+1�− �z�n + Pi

�ri

�t0e−�z�2

d�z = z

�16�

Equation �16� can be solved numerically to obtain longitudinal
strain, �z, which can be substituted into Eqs. �11� and �12� to
compute longitudinal stress, �z, and radial stress, �r, respectively.
When longitudinal strain �z is small, it is reasonable to assume
that the deformed tube thickness t approximate the original thick-
ness t0. Thus, Eq. �7� can be reduced to d�Z /dz= �� / t��r. Thus
the second term on the left hand side of Eq. �15� can be ignored.
By substituting ro / to=
 and ri / to=
−1 into Eq. �15�, Eq. �17�
can be obtained. Integrating Eq. �17�, and considering the bound-
ary conditions that �z=0 at z=0, an explicit expression for �z can
be obtained as given in Eq. �18�. Details on the integration of Eq.
�17� are given in Appendix C.



0

�z

−
�
 −

1

2
�K�n+1n�− �z�n−1

�

2t0
K�n+1�− �z�n + Pi

��
 − 1�
t0

d�z = z �17�

�z = − �2�
 − 1�
K�n+1 pi�exp

�z

�2
 − 1�t0
− 1��1/n

�18�

By substituting Eq. �18� into Eqs. �11� and �12�, the radial and
longitudinal stresses can be obtained as functions of interface fric-
tion, internal pressure, wall thickness, and ratio of tube outer ra-
dius to tube wall thickness. Equation �19� gives a complete de-
scription of the stresses and strains of section I.

�r = − �piexp
�z

�2
 − 1�t0
�

�z = − ��2
 − 1��exp
�z

�2
 − 1�t0
− 1�pi + pi�

�� = − � �2
 − 1�
2

�exp
�z

�2
 − 1�t0
− 1�pi

+
1�exp

�z
+ 1�pi�
2 �2
 − 1�t0

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



B
s
o

a

F
t
fi
t
t
E

F
t
−
t
f
c
o
v

J

Downlo
�z = − �2�
 − 1�
K�n+1 pi�exp

�z

�2
 − 1�t0
− 1��1/n

, �r = − �z, �� = 0

�19�

y the same derivation process, Eq. �20� can be obtained to de-
cribe the stresses and strains of section II. The detailed derivation
f Eq. �20� is given in Appendix A.

�r = − �piexp
− �z

�2
 − 1�t0
�

�z = − �pi − pi�2
 − 1��1 − exp
− �z

�2
 − 1�t0
��

�� = − �1

2
pi�1 + exp

− �z

�2
 − 1�t0
�

+
1

2
�2
 − 1��1 − exp

− �z

�2
 − 1�t0
�pi�

�z = �2�
 − 1�
K�n+1 pi�1 − exp

− �z

�2
 − 1�t0
��1/n

, �r = − �z, �� = 0

�20�

3.4 Determination of Deformed Length L, and Lengths l1
nd l2 for Sections I and II

3.4.1 Determination of Deformed Length L When the Tube is
ully Covered by Section II. In order to determine whether the

ube is fully covered by section II, the boundary conditions are
rst examined. The boundary condition of this tribotest is such

hat one end of the tube is free, for which �z is zero. This meets
he conditions of section II that �z��r. Substituting �z=0 into
q. �20� l2 can be determined.

pi − pi�2
 − 1��1 − exp
− �l2

�2
 − 1�t0
� = 0

⇒ l2 =
�2
 − 1�t0

�
ln�2
 − 1

2
 − 2
� �21�

rom Eq. �21�, it can be seen that when � is very small, l2 can
heoretically be greater than L. Therefore, when 1

� �2

1�t0 ln��2
−1� / �2
−2���L, the tube is fully covered by sec-

ion II, as shown in Fig. 7. Since this condition occurs under lower
riction, the change in tube length due to deformation is insignifi-
ant. Thus the final tube length, L, can be approximated to the
riginal tube length L0. Alternatively, we can determine, L, by
olume constancy condition, as given in Eq. �22�.

V0 = V ⇒ 2�roL0t0 = 2�ro
L

t0e�rdz �22�

Fig. 7 Stress state of tube fully covered by section II
0
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L0 =

0

L

e�rdz, l2 = L, l1 = 0 �23�

where Vo is the original volume of the tube and V is the volume of
the tube after test.

Because the tube is fully covered by section II, only Eq. �20� is
used to calculate the stress and strain. L can be calculated from
Eq. �23�, where �r is taken from Eq. �20�. Thus, when the tube is
fully covered by section II, the deformed length L, and lengths l1
and l2 for sections I and II, respectively, can be determined by Eq.
�23�.

3.4.2 Determination of l1 and l2 When the Tube is Covered by
Sections I and II. The state of stress when the tube is covered by
sections I and II is shown in Fig. 5. The length, L, is calculated by
volume constancy using Eq. �22�, where the volume of the tube is
calculated by summing the respective volumes for sections I and
II, respectively, as shown in Eq. �24�. l1 and l2 are finally deter-
mined by Eq. �25�.

L0 =

0

L− 1
�

�2
−1�t0 ln��2
−1�/�2
−2�
exp�− �Z�dz2

+

0

1
�

�2
−1�t0 ln��2
−1�/�2
−2�
exp�− �Z�dz2 �24�

l2 =
�2
 − 1�t0

�
ln�2
 − 1

2
 − 2
�, l1 = L − l2 �25�

4 Derivation of Expression for Friction Coefficient
As discussed in Sec. 1, most of the existing tribotest variants

for the guiding zone assume that the interface pressure between
the tube and the die is approximately the same as the internal tube
fluid pressure �16,21�. The radial stress derived in Sec. 3 �Eqs.
�19� and �20�� shows clearly that the interface pressure may vary
drastically depending on the coefficient of friction and other geo-
metric variables. In this section, we will derive the expression for
interface friction. This derivation will include parameters that can
be obtained in the guiding zone tribotest experiments, such as
friction force �Ff� measured by the load cell �refer to Fig. 2� and
fluid pressure
�Pi�suppliedinsidethetube,andthemeasuredoriginaltubelength�Lo�
and deformed tube length �L�.

In most of the guiding zone tribotest, the longitudinal strain is
small and the radial pressures can be determined by Eqs. �19� and
�20�, which give the contact pressures at the tool-tube interface.
The two equations represent two contact scenarios that may occur
during the test. One of the contact conditions is that the tube is full
covered by section II, and the other is that the tube is covered by
sections I and II. When the tube is covered by sections I and II,
Eqs. �19� and �20� are both used to calculate the contact pressure.
The state of stress under this condition is shown in Fig. 5. Friction
force Ff is now expressed by Eq. �26�. Equation �27� is obtained
by substituting Eqs. �19� and �20� into Eq. �26�. Substituting Eq.
�25� into Eq. �28�, Eq. �29� is obtained. From Eq. �29�, the coef-
ficient of friction � can be expressed as shown in Eq. �30�.

Ff =

0

l2

2�ro�	�r	dz2 +

0

l1

2�ro�	�r	dz1 �26�

Ff =

0

l2

2�ro�piexp� − �z2

�2
 − 1�t0
�dz2

+
l1

2�ro�pi� �z1

�2
 − 1�t0
�dz1 �27�
0
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Ff = 2�ro�2
 − 1�t0pi�exp
�l1

�2
 − 1�t0
− exp

− �l2

�2
 − 1�t0
� �28�

Ff = 4�ro�
 − 1�t0pi�exp
�L

�2
 − 1�t0
− 1� �29�

� =
�2
 − 1�t0

L
ln� Ff

4�ropi�
 − 1�t0
+ 1� �30�

t should be noted that the derivation that lead to Eq. �30� focused
n expressing Coulomb friction as a function of interface pressure
nd friction stress. During the experiment the frictional force, Ff,
an be measured. Since the normal load cannot easily be mea-
ured, the analytical model provides the normal stress, �r. The
nfluence of tube surface roughness and speed of the punch is not
onsidered.

Results and Discussion

5.1 Comparison Between Analytical Model and Finite El-
ment Simulation Results. Finite element simulations for the
uiding zone were carried out in order to validate the closed-form
olutions developed for contact pressure, longitudinal stress, ef-
ective stress and strain, longitudinal strain, given in Eqs. �11�,
12�, �16�, and �20�, and the solutions for friction force given in
q. �26�. The finite element simulations were carried out by com-
ercial rigid plastic implicit finite element analysis �FEA� code,

EFORM 2D. Various case studies were simulated, two of which are
resented in this paper. Figure 8 shows the FEA model used. The
ie and punch were treated as rigid bodies and the tube was dis-
retized by 2000 quadrilateral elements with five elements across
he wall thickness. The power law flow stress equation was used
ith strength coefficient K=500 MPa and strain hardening expo-
ent n=0.3. The forming duration was set at 10 s. The die was
xed while the punch was assigned a longitudinal velocity of 15
m/s. A pressure of 30 MPa was applied on the inner surface of

he tube as internal fluid pressure. The interface friction at the
ie-tube interface was prescribed by assuming Coulombs friction
aw.

Figure 9 presents state variables with two friction condition:
ne for friction coefficient of �=0.05 and another for �=0.2.
igure 9 shows the comparison between the analytical model and

he FEA model for contact pressure, effective stress, and effective
train distribution. The analytical model agrees well with the FEA
esults for both friction conditions. Figure 9�f� show the punch
oad prediction comparison for �=0.05 and �=0.2. The punch
oad for �=0.05 from analytical model is 50 kN. When friction
oefficient of �=0.2 was used, the load increased to 240 kN. The
orresponding FEA results for the punch load are 44 kN and 210
N for �=0.05 and �=0.2, respectively. These values are close to
hat obtained using the analytical model.

The punch load history from the finite element simulation
hown in Fig. 9�f� shows two distinct stages. The punch load
ncreases gradually with an increase in the forming time up to a

aximum load; thereafter a constant load is maintained for the
hole forming duration. The initial stage shows load buildup be-

Fig. 8 Schematic of FEA model for the guiding zone test
ore the tube starts to slide against the die. The analytical model
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provides punch load at the commencement of sliding, i.e., the
initial stage is not accounted in this model. It should also be noted
that the load built-up duration before the tube start to slide de-
pends on the prescribed interface friction, as can be observed in
Fig. 9�f�.

5.2 Potential Areas of Application for the Established
Closed-Form Solutions. The established equations can provide
local distribution of field variables along the tube length in terms
of principal stresses and strains as a function of friction coeffi-
cient, fluid pressure, and geometric variables. These equations can
facilitate better understanding of tribological aspects in the guid-
ing zone and can be helpful in the design of tooling for THF.

Tribological aspects in THF. Most frictional data obtained from
existing tribotests for the guiding zone have been determined by
assuming that the internal fluid pressure is the same as the inter-
face pressure. Figures 9�a� show that the interface pressure can
increase dramatically beyond the internal fluid pressure �Pi�. Fig-
ure 9�a� shows that at a friction coefficient of �=0.2, the interface
pressure varied from 30 MPa to 62 MPa when the internal fluid
pressure was 30 MPa. While coefficient of friction may be rea-
sonably approximated by assuming that internal fluid pressure
equals interface pressure, using the internal pressure for studying
other tribological aspects such as die wear may lead to significant
error. Figure 9�c� shows the steep gradients for the longitudinal
stress of the order of 0–500 MPa. High compressive stresses dic-
tated by �z can provide useful information on how certain lubri-
cants may perform, as well as giving insight on possible changes
in the tube surface morphology. Furthermore, knowing the contact
stress at the tool-tube interface together with longitudinal stress
distributions should provide information to the tribologist/
lubricant formulator on whether microplastohydrodynamic or mi-
croplastohydrostatic lubrication mechanisms are likely to occur.
For highly strain hardening materials, the local strain distribution
may provide insight as to what types of lubricant chemistries may
be applicable on surfaces that exhibit significant hardening during
deformation.

As discussed in Sec. 1, most of the guiding zone tribotests
developed to date assume that the interface pressure to be equal to
the internal fluid pressure. From the derived equations for contact
pressure, see Fig. 9�a�, the approximation of internal pressure will
be reasonable only when the friction level is small and when the
tube sample is shorter. As seen in Fig. 9�a�, up to a tube length of
75 mm, the contact pressure is equal to the internal fluid pressure
when �=0.05. The experimental results for the guiding zone from
Hwang et al. �21� were compared with the results from the derived
analytical model. Hwang et al. �21� carried out the experiments
using 70 mm long tube with an outer diameter of 72 mm and a
wall thickness of 3 mm. The internal pressure of 20 MPa was
assumed to be equal to the contact pressure. Using lubricant R68,
they obtained a friction load of 14.5 kN, which yielded a friction
coefficient �=0.046. From the expression given in Eq. �30�,
where 
=ro / to=12, the interface friction can be determined as
follows:

� = �2 � 12 − 1

70
�3 ln� 14,500

4� � 36 � 20�12 − 1�3
+ 1� = 0.0467

The friction value obtained from the analytical expression is al-
most identical to what was obtained by Hwang et al. �21�. As
discussed above this should be the case with low friction levels.

Tube hydroforming tooling design. The guiding zone is an inte-
gral part of THF tooling. The purpose of the guiding zone is to
hold and align the tube. It is where the tube is completely sealed
so that high forming pressure can be attained. The guiding zone
also serves as a gateway for the material to be fed to the die
cavity. Since the highest sliding velocity is encountered in this
zone, the die is susceptible to failure due to wear. Figure 1�b�
shows a typical THF tooling with feeding die inserts at the guid-

ing zone. Due to high sliding velocity and friction stress, the guid-
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ng zone may be subjected to severe wear. Using the established
quations, tool designers can quickly plot a “friction hill enve-
ope” to aid in determining suitable geometric parameters, load
equirements for press and axial cylinder actuators, etc. From Eq.
30�, we saw that the contact pressure is formulated based on the
oordinate system CS1 depicted again in Fig. 10 where the origin
t the centerline point meets the condition ��z=�r�.

If a new coordinate system CS2 �Fig. 10� is established at the
ree end of the tube, then point P1 in section I has two sets of

Fig. 9 Influence of interface friction on co
strain distribution
Fig. 10 Coordinate systems of tube
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coordinate �z1 ,r� and �z ,r� for CS1 and CS2, respectively, while
point P2 in the section II has two sets of coordinate �z2 ,r� and
�z ,r� for CS1 and CS2, respectively. By the geometrical relation,
Eq. �31� can be obtained. Combining Eqs. �19� and �20� lead to
Eq. �32�.

�Z = Z1 + L2

L2 = Z2 + Z
� ⇒ �Z1 = Z − L2

Z2 = L2 − Z
� �31�

�r = − piexp
�z1

�2
 − 1�t0
, 0 
 z1 
 l1

�r = − piexp
− �z2

�2
 − 1�t0
, 0 
 z2 
 l2 �32�

Substituting Eq. �31� into Eq. �32�, Eq. �33� is obtained, which can
be simplified to Eq. �34�. By substituting Eq. �25� into Eq. �34�,
the contact pressure in the form given in Eq. �35� is obtained.

�r = − piexp
��Z − L2�

, L2 
 z 
 L

ct pressure, effective stress, and effective
nta
�2
 − 1�t0
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�r = − piexp
��Z − L2�
�2
 − 1�t0

, 0 
 z 
 L2 �33�

�r = − piexp
��Z − L2�
t0�2
 − 1�

�34�

�r = − piexp� �

�2
 − 1�t0
�Z −

�2
 − 1�t0

�
ln

2
 − 1

2
 − 2
��

= − �2
 − 2

2
 − 1
�piexp

�z

�2
 − 1�t0
�35�

quation �35� can be used to plot a friction hill envelope for the
uiding zone. Figure 11 shows an example of a friction hill enve-
ope for a guiding zone with 200 mm tube length, 50 mm tube
iameter, and 2 mm wall thickness at an internal pressure Pi. As
een in Fig. 11, when �=0.2, the maximum pressure acting on the
ube-die interface is over two times higher than the fluid pressure.

A more generic form, however, is a dimensionless scheme that
hows the variation in maximum die contact pressure to fluid pres-
ure ratio ��r / Pi� with tube length to diameter ratio �Lo /Do� for
arious friction conditions. The variable Rp is defined as ratio of
ontact pressure, �r, to internal pressure, Pi. By considering the
ube as a thin wall structure where 
�10, the ratio Rp can be
xpressed as a function of interface friction and geometric vari-
bles. From Eq. �36�, it can be seen that the maximum Rp occurs
t the loaded end of the tube where Z=Lo, as expressed in Eq.
37�.

Rp = ��r

pi
� = �2
 − 2

2
 − 1
�exp

�z

�2
 − 1�t0
� exp

�z

Do
�36�

here

�2
 − 2

2
 − 1
� � 1, �2
 − 1�t0 = �2

ro

t
− 1�t0 � Do

Max�Rp� � exp
�Lo

Do
�37�

quation �37� shows that the maximum contact pressure along the
ube length depends on the friction coefficient � and the ratio of
ube length Lo to the tube outer diameter Do. Figure 12 shows the
ariation in Rp with the Lo /Do ratio. It can be seen that maximum
ontact pressure increases rapidly with the increase in Lo /Do ratio.
hus, the ratio, Lo /Do, is a critical parameter in the design of the
uiding zone for tube hydroforming systems.

The friction hill envelope given in Fig. 11 and variation in
ax Rp versus Lo /Do given in Fig. 12 have been established

ased on Eq. �35�, which is valid for low strain range. Figures 11
nd 12 can therefore be applied when the tube length to diameter
atio Lo /Do does not exceed 4 and a maximum coefficient of

Fig. 11 Friction hill envelope for THF guiding zone
riction of �=0.2. Appendix B gives details on derivation of ex-
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pressions for determining state variables at higher strain level
��z=0.1–2.0�. An example of tube-die contact pressure distribu-
tion at higher strain level is given in Fig. 13. These curves were
generated by the derived expression given in Appendix B. Figure
13 shows the maximum pressure that can be generated when an
internal pressure of 60 MPa is applied on a tubular material with
a strain hardening exponent, n=0.3, and a strength coefficient,
K=500 MPa.

As can be seen from Fig. 13, an original tube length of 500 mm
�Lo /Do=10� result in a contact pressure of up to 450 MPa when a
coefficient of friction of �=0.4 is exhibited at the interface. This
pressure is over seven times higher than the forming pressure. The
figure also shows that the increase in interface pressure is highly
influenced by the increase in Lo /Do ratio. Figure 13 also shows
the comparison between the analytical model and FEA for tube
lengths of 200 mm and 400 mm. With 200 mm tubing, FEA shows
contact pressure at the tube-die interface of 86 MPa, 113 MPa,
and 138 MPa for �=0.1, �=0.2, and �=0.3, respectively,
whereas the analytical model exhibited contact pressures of 87
MPa, 109 MPa, and 133 MPa for �=0.1, �=0.2, and �=0.3
respectively. As the tube is pushed in the guiding zone, tube thick-
ening will occur and the tube length will be shortened. For an
initial tube length of 200 mm, FEA shows that final deformed tube
lengths were 181 mm, 147 mm, and 127 mm for �=0.1, �=0.2,
and �=0.3, respectively. The analytical model resulted in final
tube lengths of 181 mm, 150 mm, and 130 mm for �=0.1, �
=0.2, and �=0.3, respectively. Good agreement can be observed
between analytical model and FEA results.

Fig. 12 Variation of maximum Rp with Lo /Do ratio for various
friction conditions

Fig. 13 Evolution of friction hill envelop and maximum contact
pressure for a tubular material with K=500 MPa, n=0.3, and a

forming pressure of 60 MPa
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Conclusions
Closed-form solutions that characterize the guiding zone tri-

otest for tube hydroforming were established based on a mecha-
istic approach. From the derived analytical model field, variables
an be computed along the tube. These variables include �a� con-
act pressure distribution, �b� effective stress and strain distribu-
ion, �c� longitudinal stress and strain distribution, and �d� hoop
tress distribution.

Based on the derived equation for the contact pressure at the
ool-tube interface, an expression for determining the coefficient
f friction for the guiding zone tribotest was established. This
xpression is a function of tube geometric variables, internal pres-
ure, and friction force obtained from tribotest experiment.

Through this study, friction hill envelopes for the guiding zone
ere established. These friction hill envelopes show the variation

n contact pressure along the tube length as a function of friction
oefficient. The study has also shown that the maximum contact
ressure at the tool-tube interface increase rapidly with the in-
rease in Lo /Do ratio. Thus, the ratio Lo /Do is a critical parameter
n the design of the guiding zone for tube hydroforming systems.
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omenclature
� � friction coefficient
Ff � friction force
Fc � normal load

F ,F1 ,F2 � tube end load
Pi � internal pressure
Di � inner diameter
Do � outer diameter
ri � inner radius
ro � outer radius
L � deformed tube length

Lo � initial tube length
l1 � length of section I
l2 � length of section II
t � deformed tube thickness

t0 � original tube thickness
V � volume of deformed tube

V0 � volume of initial tube

 � ratio of tuber outer radius to initial tube wall

thickness
Di � internal diameter of the tube
	 � ratio of tuber outer radius to instantaneous tube

wall thickness
Rp � ratio of contact pressure to internal pressure
�̄ � effective stress
�̄ � effective strain
K � strength coefficient
n � strain hardening exponent

�z � longitudinal stress
�r � radial stress
�h � hoop stress
�z � longitudinal strain
�r � radial strain
�� � hoop strain

Z ,Z1 ,Z2 � longitudinal coordinate of the tube

ppendix A: Derivation of Strain εz in Section II of the
ube in the Guiding Zone
The longitudinal strain �z of section II can be derived from Eqs.

4�, �5�, �7�, and �10�. We set the tube length l2 and the original

oint on the z-axis to where �z=�r �refer Fig. 5�. Because section

ournal of Manufacturing Science and Engineering
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II is near the free tube end, the longitudinal strain �z is small. Thus
the term dt in Eq. �6� can be neglected and Eq. �6� can be reduced
to Eq. �A1�. The radial stress and longitudinal stress given in Eqs.
�A2� and �A3� are obtained by combining Eqs. �4�, �5�, and �10�.
From Eq. �A3�, Eq. �A4� can be derived. Substituting Eqs. �A1�
and �A2� into Eq. �A4� yields Eq. �A5�.

d�Z

dz
= −

�

t
�r �A1�

�r = −

Pi

2ri

t
− K�n+1�z

n

2ro

t
− 2

�A2�

�z = −

Pi
ri

t
− � ro

t
−

1

2
�K�n+1�z

n

ro

t
− 1

�A3�

d�z

dz
= −

ro

t
−

1

2

ro

t
− 1

K�n+1n�z
n−1d�z

dz
�A4�

� ro

t
−

1

2
�K�n+1n�z

n−1d�z

dz
=

�

t

ri

t
Pi −

�

2t
K�n+1�z

n �A5�

Section II is near the free tube end and the axial load from the
punch drops significantly in this section, which results in small
axial strain �z. Thus, it is reasonable to assume that the deformed
tube thickness t approximate original length t0. Let ro / to=
,
ri / to=
−1, and substitute into Eq. �A5� to obtain Eq. �A6�. Inte-
grating Eq. �A6�, and invoking the boundary conditions that �z
=0 at z=0, an explicit expression for �z can be obtained as given
in Eq. �A7�. By substituting Eq. �A7� into Eqs. �A2� and �A3�, the
radial and longitudinal stress can be obtained as functions of in-
terface friction, internal pressure, wall thickness, and the ratio of
tube outer radius to tube wall thickness.

�
 −
1

2
�K�n+1n�z

n−1d�z

dz
=

�

t
Pi�
 − 1� −

�

2t
K�n+1�z

n �A6�

�z = �2�
 − 1�
K�n+1 pi�1 − exp

− �z

�2
 − 1�t��1/n

�A7�

Appendix B: Explicit formula for Evaluation of State
Variables at High Strain Range

Figure 14 shows a typical characteristic curve �Z versus �z�
obtained from Eq. �16�. Figure 14 shows that longitudinal strain �z
varies approximately linearly with longitudinal tube length z at
high strain range of ��z=−0.1��z=−2.0�. It is therefore possible
to get an explicit formula for evaluating the state variables such as
contact pressure at high strain level. From the linear relationship,
Eq. �16� can be simplified to Eq. �B1�.

z = z−0.1 + Slp��z + 0.1� �B1�

where “Slp” is the slope of the curve and Z−0.1 is the longitudinal
length where the longitudinal strain is �z=−0.1. The slope of the
curve can be computed approximately by substituting �z=−1.0
into the integrand at the left side of Eq. �16� which leads to Eq.
�B2�. Z−0.1 can be obtained by substituting �z=−1.0 into Eq. �18�,
as shown in Eq. �B3�. Note that the slope, Slp, is a function of K,

n, ro, to, Pi, and �.
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Slp = −
� ro

t0e
−

1

2
�K�n+1�n + 1� + Pi

ro − t0e

t0e

�

2t0e
K�n+1 + Pi

�ri

�t0e�2

= −
1

�

�2
 − e��n + 1�K�n+1t0e + 2Pit0e�
 − e�
eK�n+1 + 2Pi�
 − e�

− 0.1

= − �2�
 − 1�
K�n+1 pi�e

�
�2
−1�t0

z−0.1 − 1��1/n

�B2�

z−0.1 =
�2
 − 1�t0

�
ln�K�n+1�0.1�n

2�
 − 1�pi
+ 1� �B3�

ubstituting Eqs. �B2� and �B3� into Eq. �B1�, an explicit expres-

Fig. 14 Characteristic curve of Eq. „16…
ion for the longitudinal strain can be obtained, Eq. �B4�. By

etermined.
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substituting Eq. �B4� into Eqs. �11� and �12�, the contact pressure
and longitudinal stress can be expressed explicitly. The deformed
tube length L can be evaluated by the volume constant condition
as given in Eq. �B5�. Substituting Eq. �B4� into Eq. �11�, the
explicit form for contact pressure evaluation is obtained as Eq.
�B6�. The expression for maximum pressure can be obtained by
substituting Z=Lo into Eq. �B6�.

�z = − �0.1 + b��z − c��

b =
�eK�n+1 + 2Pi�
 − e��

�2
 − e��n + 1�K�n+1t0e + 2Pit0e�
 − e�

c =
�2
 − 1�t0

�
ln�K�n+1�0.1�n

2�
 − 1�pi
+ 1� �B4�

V0 = V ⇒ 2�r0t0L0 =

0

L

2�r0t0exp�0.1 + b��z − c��dz

⇒ L =
ln��bL0 + exp�0.1 − �bc�� − 0.1

b�
+ c �B5�
�r = −
K�n+1�0.1 + b��z − c��nt0e�0.1+b��z−c�� + Pi2�ro − t0e�0.1+b��z−c���

2�ro − t0e�0.1+b��z−c���
�B6�
ppendix C: Integration of Equation (17)


 dz =
 −
�
 −

1

2
�K�n+1n�− �z�n−1

�

2t0
K�n+1�− �z�n + Pi

��
 − 1�
t0

d�z �C1�

Let a = �
 −
1

2
�K�n+1, b =

�

2t
K�n+1, c =

��
 − 1�
t

Pi

�C2�


 dz =
 an�− �z�n−1d�− �z�
b�− �z�n + c

=
a

b
 d�b�− �z�n + c�
b�− �z�n + c

�C3�

a

b
ln�b�− �z�n + c� + c0 = z �C4�

he boundary conditions are such that when z=0, �z=�r. By
ubstituting �z=0 at z=0 into Eq. �C4�, the constant c0 can be
c0 = −
a

b
ln�c�, z =

a

b
ln�b�− �z�n + c

c
�

�z = − � c

b
�exp

bz

a
− 1��1/n

= − �2�
 − 1�
K�n+1 pi�exp

�z

�2
 − 1�t
− 1��1/n

�C5�
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