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An analytical model for planar tube hydroforming based on deformation theory has been developed.

This analytical model can be used to predict hydroformed shape, corner fill, wall thinning, and forming

pressure. As the model is based on a mechanistic approach with bending effects included, local strain

and stress distribution across the wall thickness can be determined. This includes strain and stress

distributions for the outer layer, inside layer, and middle layer. The model is validated using finite

element analysis and tube hydroforming experiments on irregular triangular, irregular quadrilateral,

and pentagonal hydroformed shapes.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in numerical modeling have made possible reduction
of experimentation on the design of various metal-forming
processes such as forging, stamping, rolling, and tube hydroform-
ing (THF). Finite element analysis (FEA) has been found to be a
very useful tool in developing a progression sequence for sheet
metal forming and forging. It has also been found that optimal/
workable solution sequences can be narrowed very quickly by
combining finite element (FE) simulations and expertise from
experienced process designers [1]. One of the limitations of most
of the current FE solution schemes for metal forming is that they
do not provide parametric analysis; hence any parametric
investigation is usually done manually by changing one FEA
model to another until a feasible solution is obtained.

With classical metal-forming processes such as forging and
stamping, there are various mathematical models that allow one
to quickly determine parameters of interest for the specific
process that will guide the modeler to initially set an FEA model
that may be close to a workable solution. This is, however, not the
case for THF, as this process is relatively new. Furthermore, there
is less experience accumulated in the design of THF processes as
compared to the classical metal-forming processes. Lately, FEA has
been widely used in the development of THF processes. A lot of
effort has been put in studying process variables for developing
loading paths via FEA, etc. [2–9]. Although the advances in FEA
capability have increased the utilization of this technology, more
ll rights reserved.

ile).
research is needed to establish analytical models for THF.
Establishment of closed-form analytical solutions for THF may
help in understanding the mechanics behind the THF processes
better. Analytic solutions facilitate parametric study and can aid
an FEA modeler in seeking out optimal THF process conditions.
The analytic solution exposes the underlying relationship be-
tween the variables, which may otherwise be obscured by
numerical analysis.

Some of the analytical models and numerical studies using FEA
for THF are briefly summarized below. Earlier work on analytical
models was carried out by Asnafi [10] in 1999, where he derived
relationships for axial forces, yield strength, limiting strength,
friction, etc. In 2001, Xia [11] derived an analytical model to
predict bursting and wrinkling failures for the expansion
of circular tubes using internal pressure and end feeding. In
2002, Koc and Altan [12] applied plasticity, membrane,
and thin–thick walled tube theories to predict buckling, wrinkling,
and bursting as well as axial force, internal pressure, counter
force, and thinning in THF. Other analytical models for tube failure
have been discussed by several researchers [13,14]. In an attempt
to determine the increase in formability of THF via dual
hydroforming techniques, Jain et al. [15] derived plastic instability
criteria for hydroforming of a bulged shape with external
pressure. They found some increase in formability with dual
hydroforming.

Rama et al. [16] developed a two-dimensional (2D) numerical
method based on the membrane analogy to tube–sheet deforma-
tion with the concept of FEs for sheet discretization, while
utilizing a kinematically admissible approach to derive explicit
expressions for relating loads and deformation. Their results
demonstrated that the formulation is computationally efficient
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Nomenclature

Fh hoop force
P internal pressure
r outer radius
rr corner radius
L length of linear section
t deformed tube thickness
t0 initial tube thickness
K strength coefficient

n strain hardening coefficient
s effective stress
� effective strain
m friction coefficient
sy, sy,o, sy,i hoop stress
sr, sr,o, sr,i radial stress
sz, sz,o, sz,i longitudinal stress
ey , ey,o, ey,i hoop strain
er, er,o, er,i radial strain
ez, ez,o, ez,i longitudinal strain
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and can be a great tool for a process designer to study process
feasibility. Characteristics of corner fill using a square die have
been investigated by many researchers via FEA and analysis
[17–19]. Hwang and Chen [20,21] developed a mathematical
model to analyze tube expansion in a rectangular die with sticking
friction condition and a square cross-section die with sliding
friction condition. In 2007, Orban and Hu [22] developed an
analytical model to study the friction characteristic of corner fill in
planar THF with frictionless, sliding, and sticking friction condi-
tions. All these incrementally analytical models provided effective
ways and powerful tools to predict forming pressure, tube-
thinning distribution, and friction characteristic of corner fill in
planar THF, despite the limitations of the prescribed friction
conditions and omission of bending effects.

In order to reduce the computational time associated with
three-dimensional (3D)-FEA modeling of bend–stretch forming of
rectangular tube sections, Miller et al. [23,24] developed a 2D
analytical model which can capture the effect of tension, pressure,
and loading history on the quality of the tubes. The model was
based on the assumption that the problem variables do not
change along the length. The results from this model were in good
agreement with experimental results, implying that the 2D
analytical model can be an efficient tool for parametric study of
the forming process at the design stage. Corona [25] extended this
model to be applicable for arbitrary tube cross-sections. Using this
model they were able to run algorithm in the order of 2 min using
a SUN Ultra-10 workstation. Based on the work of Miller et al. [24]
and Corona [25], Guan et al. [27] proposed a Fourier-series-based
FEA of THF for axisymmetric model and Guan and Pourboghrat
discussed generalized plane strain model in [26]. Fourier inter-
polation functions were used in their models due to the fact that
these functions lead to considerable reduction in the size of
global stiffness matrix as well as the number of variables. In
their generalized plane strain model, axial feeding was simulated
by specifying compressive load or actual strain. Smith et al. [28]
and Smith and Sun [29] introduced closed-form formulas
for planar THF analysis. The formulae proposed could be used
to predict the smallest achievable corner-fill radii and their
corresponding forming pressure. Even though these formulae
were derived on purely geometric analysis and assumed sticking
friction conditions, the results agreed very well with experi-
mental data for square section hydroformed parts. The formula
derived by Smith et al. [28] and Smith and Sun [29] can benefit
hydroforming process designers substantially in the early stages
for determining feasibility of THF before embarking into extensive
FE simulation, where more details on material flow, etc., could be
obtained.

The present work introduces a mechanics-based analytical
model for planar THF of both irregular and regular polygon
shapes. This model employs total deformation theory, where the
tool–tube interface friction is governed by Coulomb’s friction law.
The analytical model also includes bending effects of the
deformed tube.
2. Objectives

In an attempt to understand the interrelationship of variables
pertaining to analytical modeling of THF better, this paper will
present mechanics-based derivation equations for a family of
planar THF shapes. The derived equations are aimed at predicting
the forming pressure, formed shape, corner fill, and wall thinning
for regular and irregular polygon shapes. It is expected that this
model may be beneficial in preliminary determination of the
feasibility of hydroforming a part. The model is also expected to
open new avenues for further derivation of analytical solutions
that may incorporate different material models and also for
extension to more sophisticated geometries. Since the derivation
is based purely on mechanics, the analytical solutions also provide
principal stresses and strains.
3. Plane strain THF analysis of polygon shapes

3.1. Scheme of analysis

We first present a family of irregular and regular polygon
shapes showing the geometric constraints considered in the
analysis. Figs. 1(a) and (b) show triangular, quadrilateral, and
pentagon shapes before and after hydroforming has taken place.
For each die set and tubular material, the following geometrical
variables are given: part corner radius r, die corner angle a, and
die–tube contact length L (Fig. 2).

As seen in Fig. 2, initially the tube will be in contact at the four
points N1, N2, N3, and N4. As the tube expands, line contact will
start forming in four regions for the case of a quadrilateral. At a
process time tp, contact length Li will be formed in the four
regions. The contact lengths L1–L4 increase as a function of
pressure, P, interface friction, material characteristic, and polygon
geometry, up to the forming limit of the material, where failure
occurs. We will therefore divide the deforming tube into
segments, namely, a contact segment referred to as a linear
section denoted by L, and non-contact segments referred to as free
sections, which are arcs that define the radius of the part.

The following major assumptions are used in this study:
�
 The tube is homogeneous and isotropic.

�
 The elastic deformation is negligible and flow stress of the

material follows the power law.

�
 The polygon part to be hydroformed is considered to be long

enough such that the plane strain condition holds.

�
 The deformation of the tube is subdivided into linear and free

expansion segments.

�
 The deformed shape of free expansion is assumed to be an arc.

�
 The hoop force is continuous along the hoop direction; thus

the average hoop strain is assumed to be continuous.

�
 The tube is subjected to bending and unbending load; thus the

strain and stress are different on the outside surface and inside
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Fig. 1. Family of polygon shapes—scheme of tube hydroforming.

Fig. 2. Initial boundary conditions and sections in the deformed shape.
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surface of the deformed tube. The tube is divided into three
layers across the thickness: outside layer, neutral layer, and
inside layer. The neutral layer is assumed to coincide with the
middle layer of the tube.

�
 At the commencement of deformation, the tube should

establish a contact point in each surface of the polygon.

�
 The friction at the tube–die interface follows Coulomb’s

friction law.

3.2. Preliminary analysis

Based on the above assumptions, there are two sections of
different stress states along the hoop direction. In the linear
section, the tube experiences bending and stretching. The outside
layer of the tube is compressed relative to the neutral layer, and
the inside layer is stretched relative to the neutral layer. In the free
expansion section, the tube is also in the stretched state combined
with bending. Bending in the free expansion zone is in the
direction opposite to the bending in the linear section. Thus, the
outside layer of this section is stretched relative to the neutral
layer, and the inside layer is compressed relative to the neutral
layer. Although the stress and strain are different through the
thickness, they vary minimally through the thickness because the
thickness of the tube is far smaller than the tube radius. It is
therefore reasonable to assume that the variation between the
hoop stress and hoop strain is approximately linear. From the
above analysis, it is necessary to distinguish the stress and strain
in the respective layers. Thus the following notions are introduced
in this paper.

Stress and strain in middle layer: er,m, ey,m, eZ,m, sr,m, sq,m, sZ,m.
Stress and strain in inside layer: er,i, ey,i, eZ,i, sr,i, sq,i, sZ,i.
Stress and strain in outside layer: er,o, ey,o, eZ,o, sr,o, sq,o, sZ,o.
Hoop force of longitudinal unit length:

Fh ¼

Z t

0
sq dt (1)

The stress and strain in the middle layer will be derived as
average values given by the following group equations:

�y;ave ¼

R t
0 �y dt

t
¼
�y;o þ �y;i

2
¼ �y;m ¼ �y

�r;ave ¼

R t
0 �r dt

t
¼
�r;o þ �r;i

2
¼ �r;m ¼ �r

�z;ave ¼

R t
0 �z dt

t
¼
�z;o þ �z;i

2
¼ �z;m ¼ �z

8>>>>>>>>><
>>>>>>>>>:

sy;ave ¼

R t
0 sy dt

t
¼

sy;o þ sy;i
2

¼ sy;m ¼ sy

sr;ave ¼

R t
0 sr dt

t
¼

sr;o þ sr;i

2
¼ sr;m ¼ sr

sz;ave ¼

R t
0 sz dt

t
¼

sz;o þ sz;i

2
¼ sz;m ¼ sz

8>>>>>>>>><
>>>>>>>>>:

(2)

3.3. Effective stress and effective strain—plane strain condition

Effective stress is formulated as follows:

s ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsZ � srÞ

2
þ ðsr � syÞ

2
þ ðsy � szÞ

2
q

(3)

Under plane strain condition where ez ¼ 0:

sZ ¼ ðsy þ srÞ=2 (4)

Substituting Eq. (4) into Eq. (3),

s ¼

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsq � srÞ

2
q

(5)

s ¼
1

b
ðsy � srÞ; b ¼

2ffiffiffi
3
p (6)

The effective strain is expressed in the following formula:

� ¼

ffiffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Z � �rÞ

2
þ ð�r � �yÞ

2
þ ð�y � �zÞ

2
q

(7)



ARTICLE IN PRESS

C. Yang, G. Ngaile / International Journal of Mechanical Sciences 50 (2008) 1263–12791266
Due to plane strain conditions,

�z ¼ 0

�y þ �r ¼ 0

(
(8)

Substituting group Eq. (8) into Eq. (7), we obtain

� ¼
2ffiffiffi
3
p

ffiffiffiffiffi
�2y

q

� ¼ b�y; b ¼
2ffiffiffi
3
p ¼ 1:155 (9)

The power law will be used to formulate the relation between the
effective stress and strain as follows:

s ¼ K�n (10)

Substituting Eqs. (9) and (6) into Eq. (10), we obtain

1

b
ðsy � srÞ ¼ Kbn�ny (11)

sy � sr ¼ Kbnþ1�n
y (12)

3.4. Stress and strain analysis in the linear section

3.4.1. Stress and strain analysis in middle layer of linear section

Figs. 3 and 4 show the scheme of corner-forming stress acting
on an element cut from the tube. Because the equilibrium
equations for all linear sections are the same, the stress state is
analyzed in one corner of the tube. The only difference in the
linear section is the die contact length L.

Taking summation of forces in the hoop direction we obtain

Fhðxþ dxÞ � FhðxÞ � sf dx ¼ 0

From the definition of average hoop stress sy the following
equation holds:

FhðxÞ ¼ syðxÞt

Fhðxþ dxÞ ¼ syðxþ dxÞt

(

Fig. 3. Scheme of corner forming.

Fig. 4. Stress acting on an element.
syðxþ dxÞt � syðxÞt � sf dx ¼ 0

dsy
dx
¼

1

t
sf (13)

sf ¼ m sr ;o

�� ��
In the linear section, the radial stresses of three layers are the
same and equal to pressure p:

sr ¼ sr;o ¼ sr;i ¼ �p

Thus the following equation group represents the middle layer of
a linear section:

dsy
dx
¼

m
t
srj j

�p ¼ sr

sZ ¼ ðsy þ srÞ=2

8>><
>>: (14)

Combining Eq. (12) with group Eq. (14), the following group of
equations can be obtained:

dsy
dx
¼

m
t
srj j

�p ¼ sr

sZ ¼ ðsy þ srÞ=2

sy � sr ¼ Kbnþ1�ny

8>>>>><
>>>>>:

(15)

From equation group Eq. (15), the following group of equations
can be derived:

sy ¼ Kbnþ1�ny � p

dsy
dx
¼

m
t
p

8><
>: (16)

dsy
dx
¼

dðKbnþ1�ny � pÞ

dx

dsy
dx
¼ Kbnþ1n�n�1

y
d�y
dx

(17)

Substituting group Eq. (16) into Eq. (17), we obtain

m
t

p ¼ Kbnþ1n�n�1
y

d�y
dx

(18)

t ¼ t0 e�r ¼ t0 e��y (19)

m
t0 e��y

p ¼ Kbnþ1n�n�1
y

d�y
dx

m
t0

p ¼ Kbnþ1n�n�1
y e��y

d�y
dx

e��y ¼ 1þ
X1
i¼1

ð�1Þið�yÞ
i

i!
(20)

m
t0

p ¼ Kbnþ1n�n�1
y 1þ

X1
i¼1

ð�1Þið�yÞ
i

i!

 !
d�y
dxZ

mp

Kbnþ1nt0

dx ¼

Z
1þ

X1
i¼1

ð�1Þið�yÞ
i

i!

 !
�n�1
y d�y

mp

Kbnþ1nt0

x ¼
1

n
�ny þ

X1
i¼1

ð�1Þi

i!

1

iþ n
ð�yÞ

iþn
þ c0 (21)
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Substituting the boundary condition (x ¼ 0, ey ¼ eN) into Eq. (21),
the constant of integration can be obtained:

c0 ¼ �
1

n
�nN �

X1
i¼1

ð�1Þi

i!

1

iþ n
ð�NÞ

iþn

�
1

n
ð�n

y � �
n
NÞ þ

X1
i¼1

ð�1Þi

i!

1

iþ n
ð�iþn

y � �
iþn
N Þ

¼
mp

Kbnþ1nt0

x (22)

After determining the average hoop strain ey from Eq. (22), the
remaining average stress and strain shown in the following group
of equations can be computed:

�r ¼ ��y

�z ¼ 0

sy ¼ Kbnþ1�ny � p

sr ¼ �p

sr ¼
1
2 Kbnþ1�ny � p

8>>>>>><
>>>>>>:

(23)
Fig. 6. Stress acting on an element in free expansion section.
3.4.2. Stress and strain analysis in outside layer and inside layer of

linear section

In the linear section, the tube is subjected to stretching and
bending. The inside layer is stretched relative to the neutral layer
while the outside layer is compressed relative to the neutral layer.
The hoop strain in the inside layer and outside layer can be
derived from Fig. 5. Eq. (24) shows that the inside and outside
hoop strain is the sum of hoop strain in the middle layer and the
strain component caused by bending.

From the above figure, the following equation can be derived:

�y;i ¼ ln
Ln0

Li

� �
¼ ln

e�y Ln

Li

� �
¼ lnðe�y Þ þ ln

Ln

Li

� �

¼ �y þ ln
Rn

Rn� t0=2

� �

�y;o ¼ ln
Ln0

Lo

� �
¼ ln

e�y Ln

Lo

� �
¼ lnðe�y Þ þ ln

Ln

Lo

� �

¼ �y þ ln
Rn

Rnþ t0=2

� �

Rn ¼ r � t0=2

�y;i ¼ �y þ ln
r � t0=2

r � t0

� �
¼ �y þ ln 1þ

t0=2

r � t0

� �

�y;o ¼ �y þ ln
r � t0=2

r

� �
¼ �y þ ln 1�

t0=2

r

� �
(24)

Once the hoop strain in the outside and inside layers, ey,o and ey,i,
are determined, all state variables given in equation groups (25)
Fig. 5. Bending in th
and (26) can be calculated.

�y;i ¼ �y þ ln 1þ
t0=2

r � t0

� �
�r;i ¼ ��y;i

�z;i ¼ 0

sy;i ¼ Kbnþ1�ny;i � p

sr;i ¼ �p

sz;i ¼ Kbnþ1�ny;i=2� p

8>>>>>>>>>>><
>>>>>>>>>>>:

(25)

�y;o ¼ �y þ ln 1�
t0=2

r

� �
�r;o ¼ ��y;o

�z;o ¼ 0

sy;o ¼ Kbnþ1�ny;o � p

sr;o ¼ �p

sz;o ¼ Kbnþ1�n
y;o=2� p

8>>>>>>>>>>><
>>>>>>>>>>>:

(26)

3.5. Stress and strain analysis of free expansion section

3.5.1. Stress and strain analysis in middle layer of free expansion

section

Throughout the free expansion section (Fig. 6), hoop force Fh is
assumed to be the same along the hoop direction and equal to the
hoop force at the end of linear section. This implies that average
hoop stress is also uniform along the hoop direction and equal to
average hoop stress at the end of linear section. The following
equation group presents the stress variables, where sQ is the
average hoop stress at the end of the linear section denoted by
point Q (Fig. 6):

sy ¼ sQ

sr ¼ �p=2

sZ ¼ ðsy þ srÞ=2

8><
>: (27)

Throughout the free expansion section, the average hoop strain is
assumed to be the same and equal to the average hoop strain at
e linear section.
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the end of linear section.

�y ¼ �Q

�r ¼ ��Q

�z ¼ 0

8><
>: (28)

eQ can be calculated from Eq. (22) by substituting the boundary
condition (x ¼ L, ey ¼ eQ), which gives

1

n
ð�n

Q � �
n
NÞ þ

X1
i¼1

ð�1Þi

i!

1

iþ n
ð�iþn

Q � �
iþn
N Þ

¼
mp

Kbnþ1nt0

L (29)

Having determined eQ, all state variables in the free expansion
section can be established as shown in the following group of
equations:

�y ¼ �Q

�r ¼ ��Q

�z ¼ 0

sy ¼ Kbnþ1�nQ � p=2

sr ¼ �p=2

sz ¼ ðsy þ srÞ=2

8>>>>>>>>><
>>>>>>>>>:

(30)

3.5.2. Stress and strain analysis in the outside and inside layers of

free expansion section

In the free expansion section, the tube is in a stretched and
bending state. The inside layer is compressed, while the outside
layer is stretched relative to the middle layer as shown in Fig. 7. By
considering the inside and outside arc lengths of an element
shown in Fig. 7, before and after deformation, the hoop strains ey,i

and ey,o can be derived as shown below.

�y;i ¼ ln
Li0

Li

� �
¼ ln

ðrr � tÞo
ðRn� t0=2Þj

¼ ln
ðrr � tÞLn0=ðrr � t=2Þ

ðRn� t0=2Þj

¼ ln
ðrr � tÞLn e�y=ðrr � t=2Þ

ðRn� t0=2Þj

¼ ln
ðrr � tÞe�y Rnj=ðrr � t=2Þ

ðRn� t0=2Þj

¼ ln
ðrr � tÞ e�yRn=ðrr � t=2Þ

ðRn� t0=2Þ

¼ ln
ðrr � tÞ

ðrr � t0=2Þ
e�y

Rn

ðRn� t0=2Þ

¼ �y þ ln
ðrr � tÞ

ðrr � t=2Þ

Rn

ðRn� t0=2Þ

� �

¼ �y þ ln
rr � t

rr � t=2

� �
þ ln

Rn

Rn� t0=2

� �

�y;i ¼ �y þ ln
rr � t0 e�y

rr � t0e�y=2

� �
þ ln

r � t0=2

r � t0

� �
Fig. 7. Bending in the fre
�y;o ¼ ln
Lo0

Lo

� �
¼ ln

rro
ðRn� t0=2Þj

¼ ln
rrðLn0=ðrr � t=2ÞÞ

ðRnþ t0=2Þj

¼ ln
rrðLn e�y=ðrr � t=2ÞÞ

ðRn� t0=2Þj

¼ ln
rrðe�y Rnj=ðrr � t=2ÞÞ

ðRn� t0=2Þj

¼ ln
rrðrr � t=2Þ

ðRn� t0=2Þ

¼ ln
rr

ðrr � t0=2Þ
e�y

Rn

ðRnþ t0=2Þ

¼ �y þ ln
rr

ðrr � t=2Þ

Rn

ðRn� t0=2Þ

� �

¼ �y þ ln
rr

rr � t=2

� �
þ ln

Rn

Rn� t0=2

� �

�y;o ¼ �y þ ln
rr

rr � t0e�y=2

� �
þ ln

r � t0=2

r

� �

The above derivation for hoop strain in the free expansion section
shows that the hoop strains in the inside and outside layers are
the sum of the hoop strain in the middle layer and the strain
components associated with bending. Once the hoop strain in the
outside and inside layers is determined, all other state variables
given in Eqs. (31) and (32) can be evaluated.

�y;i ¼ �y þ ln
rr � t0 e�y

rr � t0 e�y=2

� �
þ ln

r � t0=2

r � t0

� �
�r;i ¼ ��y;i

�z;i ¼ 0

sy;i ¼ Kbnþ1�ny;i � p

sr;i ¼ �p

sz;i ¼ Kbnþ1�ny;i=2� p

8>>>>>>>>>>><
>>>>>>>>>>>:

(31)

�y;o ¼ �y þ ln
rr

rr � t0 e�y=2

� �
þ ln

r � t0=2

r

� �
�r;o ¼ ��y;o

�z;o ¼ 0

sy;o ¼ Kbnþ1�ny;o
sr;o ¼ 0

sz;o ¼ Kbnþ1�n
y;o=2

8>>>>>>>>>>><
>>>>>>>>>>>:

(32)

3.6. Prediction of deformed shape of the tube based on pressure

As a tube is hydroformed in a polygon die, the deformed tube
takes the polygon shape of the die. Thus the deformed shape of
the tube can be determined uniquely by the length of the linear
section L related to each corner. In order to calculate the deformed
shape of the tube, we need a method to calculate the length of
linear section L.
e expansion section.
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The free expansion section of a deformed tube is assumed to be
an arc (Fig. 6). From Eq. (30), the hoop stress in the free expansion
section can be expressed by the following equation:

sy ¼ Kbnþ1�n
Q � p=2 (33)

Hoop stress can also be calculated by the equilibrium equation in
the radial direction (Fig. 6), yielding

Fh � P � rr ¼ 0 (34)

sy ¼
Fh

t
¼

rr

t
p (35)

Substituting Eqs. (19) and (35) into Eq. (33), we arrive at

p ¼
Kbnþ1�nQ t0 e��Q

rr þ t0 e��Q =2
(36)

From Fig. 8, the following can be derived:

rr ¼ r � L ctg
p� a

2

� �
(37)

p ¼
Kbnþ1�n

Q t0 e��Q

r � L ctgðp� a=2Þ þ t0 e��Q =2
(38)

Solving for L, Eq. (38) can be rearranged to yield

L ¼ tan
p� a

2

� �
r þ

t0 e��Q

2
�

Kbnþ1�nQ t0 e��Q

p

 !
(39)

3.7. Boundary conditions

All stress and strain in the three layers of the deformed tube can
be calculated by Eqs. (22), (23), (25), (26) and (29)–(32), respectively,
if the average hoop strain eN at initial contact point N is known. If the
polygon die has m number of sides, then the number of initial contact
points is also m (Fig. 9). From Fig. 9 if we consider pressure loading in
one corner, say the corner enclosing N1 and N4, we can conclude that
�N1
¼ �N4

and sN1
¼ sN4

. If all corners are considered, we obtain
group Eq. (40) from which we can conclude that the stress and strain
values of all initial contact points are the same.

�N1
¼ �N2

sN1
¼ sN2

�N2
¼ �N3

sN2
¼ sN3

::: ::: ::::

�Nm�1
¼ �Nm

sNm�1
¼ sNm

�Nm
¼ �Nm�1

sNm
¼ sNm

8>>>>>><
>>>>>>:

(40)
Fig. 8. Geometry relation of tube corner.

Fig. 9. Initial contact points of the tube.
The quantity of eN can be calculated by imposing a volume
constant condition as follows. Before deformation, the unit
volume of the tube can be expressed as

V0 ¼ pr2 � pðr � t0Þ
2
¼ 2prt0 � pt2

0 (41)

The unit volume after deformation can be calculated as:

V ¼

Z st

0
t ds (42)

where st is the hoop length of the deformed tube. Also,

V ¼ V0 (43)

In order to calculate volume after deformation, the volume of
corner j is calculated first (Fig. 8). Then the total volume can be
obtained by summing all the volumes of all corners. In the
following derivation, subscript j is added to the parameters (Lj, rrj,
eQ,j, aj) to denote that the parameters are related to corner j. The
volume of the linear section related to corner j is calculated using
the relation.

VLj
¼ 2

Z Lj

0
t dx ¼ 2

Z Lj

0
t0 e��y dx (44)

The ‘‘dx’’ in Eq. (44) is derived from Eq. (18).

dx ¼
t0

pm
Kbnþ1n�n�1

y e�y d�y (45)

Substituting Eq. (45) into Eq. (44),

VLj
¼ 2

Z L

0
t0 e��y dx

VLj
¼ 2

Z �Q ;j

�N

t0 e��y
t0

pm
Kbnþ1n�n�1

y e��y d�y

� 	

VLj
¼

2ðt0Þ
2Kbnþ1

pm

Z �Q ;j

�N

n�n�1
y e�2�y d�y

e�2�y ¼ 1þ
X1
i¼1

ð�2Þið�yÞ
i

i!

VLj
¼

2ðt0Þ
2Kbnþ1

pm

Z �Q ;j

�N

n�n�1
y 1þ

X1
i¼1

ð�2Þið�yÞ
i

i!

 !
d�y

VLj
¼

2ðt0Þ
2Kbnþ1

pm

Z �Q ;j

�N

n�n�1
y þ

X1
i¼1

ð�2Þi

i!
nð�yÞ

iþn�1

 !
d�y

VLj
¼

2ðt0Þ
2Kbnþ1

pm
ð�nQ ;j � �

n
NÞ þ

X1
i¼1

ð�2Þi

i!

n

nþ i
ð�nþ1

Q ;j � �
nþ1
N Þ

( )

(46)

The volume of the free expansion section related to corner j can be
calculated as follows:

VFj
¼
ðp� ajÞ

2p
fprr2

j � pðrrj � tÞ2g

VFj
¼
ðp� ajÞ

2p
fprr2

j � pðrrj � t0 e��Q ;j Þ2g

VFj
¼
ðp� ajÞ

2
f2rrjt0 e��Q ;j � ðt0 e��Q ;j Þ2g (47)

Substituting Eq. (37) into Eq. (47) leads to

VFj
¼
ðp� ajÞ

2
2t0 e��Q ;j r � Lj ctg

p� aj

2

� �� �
� ðt0 e��Q ;j Þ2

n o
(48)

The sum of the volumes of the two sections related to corner j can
be expressed as.

Vj ¼ VLj
þ VFj

(49)
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Table 1
Experimental parameters for tube hydroforming

Tube material Hydroforming die geometry Max.

pressure

(Mpa)

Copper (alloy122)

f ¼ 19.05 mm,

t ¼ 0.813 mm

(a) Triangular polygon

27

SS 304 f ¼ 34.93 mm,

t ¼ 1.244 mm

(b) Quadrilateral polygon

68

Copper (alloy122)

f ¼ 50.8 mm

t ¼ 0.813 mm

(c)

Pentagon

48
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Substituting Eqs. (48) and (46) into Eq. (49) yields.

Vj ¼
2ðt0Þ

2Kbnþ1

pm
ð�n

Q ;j � �
n
NÞ þ

X1
i¼1

ð�2Þi

i!

n

nþ i
ð�nþ1

Q ;j � �
nþ1
N Þ

( )

þ
ðp� ajÞ

2
2t0 e��Q ;j r � Lj ctg

p� aj

2

� �� �
� ðt0 e��Q ;j Þ2

n o
(50)

The total volume of the deformed tube can be expressed as

V ¼
Xm

j

Vj (51)

Substituting Eq. (50) into Eq. (51) yields

V ¼
Xm

j¼1

2ðt0Þ
2Kbnþ1

pm
ð�nQ ;j � �

n
NÞ þ

X1
i¼1

ð�2Þi

i!

n

nþ i
ð�nþi

Q ;j � �
nþi
N Þ

( )

þ
X1
i¼1

ðp� ajÞ

2
2t0 e��Q ;j r � Lj ctg

p� aj

2

� �� �
� ðt0 e��Q ;j Þ2

n o
(52)

Substituting Eqs. (52) and (41) into Eq. (43) gives

2prt0 � pt2
0 ¼

Xm

j¼1

2ðt0Þ
2Kbnþ1

pm
ð�n

Q ;j � �
n
NÞ

(

þ
X1
i¼1

ð�2Þi

i!

n

nþ i
ð�nþi

Q ;j � �
nþi
N Þ

)
þ
Xm

j¼1

ðp� ajÞ

2

� 2t0 e��Q ;j r � Lj ctg
p� aj

2

� �� �n
�ðt0 e��Q ;j Þ2

o
(53)

The relationship between pressure P and the length of linear
section L of each corner was given by Eq. (39). This equation is
recapitulated in Eq. (54) with a subscript j representing a
particular corner j.

Lj ¼ tan
p� aj

2

� �
r þ

t0 e��Q ;j

2
�

Kbnþ1�nQ ;jt0 e��Q ;j

p

 !
(54)

Similarly, in a subscript form, Eq. (29) can be written as

1

n
ð�n

Q ;j � �
n
NÞ þ

X1
i¼1

ð�1Þi

i!

1

iþ n
ð�iþn

Q ;j � �
iþn
N Þ

¼
mp

Kbnþ1nt0

Lj (55)

Combining Eqs. (53)–(55), we arrived at a group equations.

L1 ¼ tan
p� a1

2

� �
r þ

t0 e��Q ;1

2
�

Kbnþ1�n
Q ;1t0 e��Q ;1

p

 !

mp

Kbnþ1nt0

L1 ¼
1

n
ð�n

Q ;j � �
n
NÞ þ

P1
i¼1

ð�1Þi

i!

1

iþ n
ð�iþn

Q ;1 � �
iþn
N Þ

::: ::: :::

Lj ¼ tan
p� aj

2

� �
r þ

t0 e��Q ;j

2
�

Kbnþ1�n
Q ;jt0 e��Q ;j

p

 !

mp

Kbnþ1nt0

Lj ¼
1

n
ð�n

Q ;j � �
n
NÞ þ

P1
i¼1

ð�1Þi

i!

1

iþ n
ð�iþn

Q ;j � �
iþn
N Þ

::: ::: :::

Lm ¼ tan
p� am

2

� �
r þ

t0 e��Q ;m

2
�

Kbnþ1�n
Q ;mt0 e��Q ;m

p

 !

mp

Kbnþ1nt0

Lm ¼
1

n
ð�nQ ;m � �

n
NÞ þ

P1
i¼1

ð�1Þi

i!

1

iþ n
ð�iþn

Q ;m � �
iþn
N Þ

2prt0 � pt2
0 ¼

Pm
k¼1

2ðt0Þ
2Kbnþ1

pm
ð�nQ ;k � �

n
NÞ þ

P1
i¼1

ð�2Þi

i!

n

nþ i
ð�nþi

Q ;k � �
nþi
N Þ

( )

þ
Pm
k¼1

ðp� akÞ

2
2t0 e��Q ;k r � Lk ctg

p� ak

2

� �� �
� ðt0 e��Q ;k Þ2

n o
. . . ðj ¼ 1;2;3; . . . ;mÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(56)

In equation group (56), there are 2m+1 unknown variables eN, L1,
L2, y, Lm , eQ,1, eQ,2, y, eQ,m. There are 2m+1 equations in this
group. These variables can therefore be determined if the internal
pressure P, material property parameters K and n, friction
coefficient m and geometric dimensions r, t, a are known. The
solution scheme for Eq. (56) is given in Appendix A (Table 1).
4. Validation of the analytical model

The analytical model discussed in the previous section was
aimed at predicting the forming pressure, formed shape, corner
fill, and wall thinning, and the stress and strain distribution for
THF in regular and irregular polygon-shaped dies. In this section,
hoop stress and hoop strain distribution, tube-thinning distribu-
tion, deformed shape vs pressure, and corner-fill curve obtained
from the analytical model are compared with FEA simulation
results and experimental results to examine the effectiveness of
this analytical model. Verifications of the analytical model were
carried out using three different dies: (1) triangular shaped, (2)
quadrilateral shaped, and (3) pentagon shaped.
4.1. THF experiments

THF experiments were carried out using a 150-ton hydroform-
ing test rig (Fig. 10). The test setup consists of the upper die, lower
die, and two axial cylinders. The upper die is connected to a 150-
ton hydraulic press through a 150-load cell. The lower die sits on a
table. The dies are made of A2 steel and hardened to 62 HRC. The
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Fig. 10. Hydroforming—experimental setup: (a) 150-ton hydroforming test rig and (b) die setup.

Table 2
FEA simulation parameters and set up model

Parameters Triangular polygon Quadrilateral polygon Pentagon

K 560 MPa 1450 MPa 560 MPa

n 0.46 0.6 0.46

Friction coefficient 0.05 0.05 0.1

Pressure loading Linear increase from 0 to 40 MPa Linear increase from 0 to 100 MPa Linear increase from 0 to 70 Mpa

DYNAFORM explicit 3D-FEA

Quadrilateral shell element number 3060 2312 2226

Integration points through shell element thickness 5 5 5

Forming duration (s) 0.01 0.01 0.01

Incremental time (s) 1.2e�6 1.2e�6 1.2e�6

Mass scaling (%) 545 625 4360

Ratio of kinetic energy to internal energy (%) Max. of 0.5 Max. of 0.8 Max. of 1.44

Tool set up FEA

ABAQUS explicit 2D-FEA

Element type 4node(CPE4R) 4node(CPE4R) 4node(CPE4R)

Element number 1114 1408 1887

Forming duration (s) 0.005 0.005 0.005

Incremental time (s) 3.40e�8S–4.25e�8S 3.68e�8S–4.27e�8S 4.56e�8S–5.31e�8S

Mass scaling (%) 100 100 100

Ratio of kinetic energy to internal energy (%) Max. of 2.32 Max. of 3 Max. of 3.75

Tool set up FEA
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test rig has a maximum fluid pressure capacity of 140 MPa. Table 2
shows the configuration of the dies and tubular materials used for
the test. Stainless-steel tubing (SS 304) and copper tubing (Alloy
122) were used. The tube length for all samples was 203.2 mm.
Before testing, the dies and tubular specimens were cleaned by
acetone. For each test condition, three samples were used (Fig. 11).
The specimens for triangular polygon and quadrilateral poly-
gon were hydroformed using Teflon sheets as a lubricant. Teflon
sheets 0.12 mm thick were wrapped around the specimens. The
specimens for pentagon were tested using oil-based lubricant.
These lubricants have friction coefficients of m ¼ 0.05 and 0.1 for
Teflon and oil-based lubricant, respectively. To emulate plane
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Fig. 11. Die inserts for three polygon-shaped dies.

Fig. 12. Hydroformed pentagon-shaped tube: (a) triangular polygon, (b) quad-

rilateral polygon, and (c) pentagon.
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strain conditions, the tubes were locked at the ends by forming a
conical shape against a die. This conical shape also facilitated
sealing of the tube. The fluid pressure was ramped linearly to the
required value for 30 s. For the triangular polygon die, the
maximum hydroforming pressure was 27 MPa, whereas the
maximum pressure for the quadrilateral polygon was 68 MPa.
For the pentagon, a maximum pressure of 48 MPa was used.
Fig. 12 shows the hydroformed parts using the three different dies.
After the test, the geometrical measurements of the hydroformed
tubes were taken.
4.2. FE simulations

In order to verify this analytical model, 3D-FEA simulations of
THF for three different polygon-shaped dies were carried
out using the commercial FEA software DYNAFORM on a PC
configured with processor of 3194-MHz Pentium IV and a RAM
of 2 GB. Two-dimensional plane strain FEA simulations were
also carried out using ABAQUS software. FEA setup and simula-
tion parameters are listed in Table 2. With DYNAFORM, shell
elements were used to discretize the tube, and the die was
treated as a rigid body. In order to approximate plane strain
condition, the tube ends were fixed. In order to reduce the
simulation time, mass scaling of 545%, 625% and 4360% were
adopted in the simulations of triangular tube, quadrilateral tube
and pentagonal, respectively, for DYNAFORM, and a mass scaling
of 100% was adopted for ABAQUS 2D-plane strain simulations
(Table 2).

It should be noted however that, as the level of mass scaling
increases, the kinetic energy of the moving mass also increases. In
order to maintain quasi-static response the recommended kinetic
energy must be less than 5% of the strain energy [30]. Table 2
shows that with the adopted mass scaling, the ratio of kinetic
energy to strain energy is less than 1.5% for DYNAFORM and less
than 3.75% for ABAQUS simulations.
5. Results and discussion

5.1. Stress and strain distribution comparison between FEA and

analysis

A comparison between analysis and FEA is given in Fig. 13
for hoop strain and hoop stress distribution pertaining to

the triangular and quadrilateral polygons. The analytical model
agrees well with the FEA results. Figs. 13(a) and (c) show
that hoop strain on the inside of the polygon is higher at the
linear sections than at the free expansion sections. In contrast,
hoop strain distribution on the outside surface exhibits an
opposite trend from that observed in the inside surface. As seen
in Figs. 13(b) and (d), hoop stress distribution on the inside
surface of the polygon exhibits the same trend as hoop strain
distribution. The hoop stress and hoop strain distributions
on the outside layer for the pentagon are shown in Fig. 14. It
can be seen clearly that the outside surfaces of free expansion
zones exhibit higher hoop strain values compared to that of the
linear sections.

This alternate increase or decrease of the hoop strain and stress
from the free expansion zone to the linear zone is associated with
bending effects. From stress and strain analysis of the outside and
inside layers, it was shown that the outside layer of the free
expansion sections experiences stretching relative to the middle
layer, while the inside layer experiences compression relative to
the middle layer. In contrast, in the linear section the outside layer
experiences compression relative to the middle layer, while
the inside layer experiences stretching relative to the middle
layer. Hence it can be concluded that: (i) the hoop strains and
stresses on the inside layer of the linear section are higher than
that on outside layer, (ii) the hoop strains and stresses on the
inside layer of the free expansion sections are less than that on
outside layer, (iii) when the corner radius at the free expansion
section becomes small, the hoop strain components due to
bending increase rapidly, which leads to rapid decrease in the
hoop strain and stress on the inside layer. Thus, the hoop strain
and stress on the outside layer of the free expansion section are
higher than that of the linear section (Fig. 14), whereas, on the
inside layer, the hoop strain and stress follow opposite trend as
seen in Fig. 13.

Fig. 15 shows that the longitudinal strain distributions in the
center sectional plane of triangular tube, quadrilateral tube, and
pentagonal tube are less than 0.02, which is negligible comparing
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Fig. 13. Hoop stress and strain distribution comparison—analysis and DYNAFORM 3D FEA. (a) Hoop strain on inside surface, (b) hoop stress on inside surface, (c) hoop

strain on inside surface, and (d) hoop stress on inside surface.

Fig. 14. Hoop strain and stress distribution comparison between analysis and DYNAFORM 3D FEA.

C. Yang, G. Ngaile / International Journal of Mechanical Sciences 50 (2008) 1263–1279 1273
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Fig. 16. Thinning and strain distribution comparison between analysis and ABAQUS 2

polygon, (c) thinning rate for pentagon, (d) hoop strain on outside surface for triangular

strain on outside surface for pentagon.
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Fig. 15. Longitudinal strain distribution along the hoop direction in the center

sectional plane of the tube by DYNAFORM FEA simulation.
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to the hoop strains observed in Figs. 13 and 14. This shows that the
plane strain condition is well approximated in the FEA simula-
tions. Fig. 16 shows thinning rate and hoop strain comparison
between 2D-plane strain FE simulations and analysis. The results
show good agreement. It should be noted, however, that the hoop
stress distributions from DYNAFORM were much closer to
the analytical model than 2D-FEA plane strain from ABAQUS
simulations.

5.2. Corner-fill, formed shape, and wall-thinning

comparison—DYNAFORM FEA, experiment, and analysis

The comparison of FEA, analysis, and experiment for the
deformed shape is given in Fig. 17. Figs. 17(a) and (c) show the DH1
height comparison for triangular and quadrilateral polygons
obtained from experiments, analysis, and FEA. Figs. 17(b) and (d)
D-FEA. (a) Thinning rate for triangular polygon, (b) thinning rate for quadrilateral

polygon, (e) hoop strain on outside surface for quadrilateral polygon, and (f) hoop
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Fig. 17. Deformed shape comparison—FEA, analysis, and experiment. (a) DH1 vs pressure, (b) corner radius vs pressure (301 corner), (c) DH1 vs pressure, and (d) corner

radius vs pressure (601 corner).

Fig. 18. Tube-thinning rate comparison between FEA and analysis.
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show corner-fill profiles, where corner radius is plotted against
pressure. A very good agreement among analysis, experiment, and
FEA can be observed.
Fig. 18 shows the thinning rate distribution for hydro-
formed pentagon with good agreement between analysis
and FEA. From Fig. 18, it can also be seen that the free
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Fig. 19. Corner-fill comparison—FEA, analysis, and experiment.

Fig. 20. Corner-fill comparison between three vertex angles (triangular polygon).

Table 3
CPU time comparison between FEA simulations and analytical model

Triangular polygon Quadrilateral polygon Pentagon

DYNAFORM 3D-FEA

At 27 MPa
At 68 MPa At 48 MPa

DYNAFORM CPU time (s) 50 65 69

ABAQUS 2D-FEA

At 27 MPa

At 68 MPa At 48 MPa

ABAQUS CPU time (s) 260 373 326

Analytical modeling CPU time (s) 9.1 3.3 5.5
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expansion zones experience maximum thinning. Fig. 19 shows
corner-fill for 1081 corner. The three experimental data
points match very well with both analytical prediction and FEA
(Fig. 19).
Fig. 20 shows that curves of corner radius vs pressure for
different vertex angles coincide for most of the pressure range.
This implies that the change in vertex angle has little influence on
corner radius. This phenomenon was observed in the experi-
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ments for both triangular and quadrilateral polygons. Note that
both of these polygon dies have different corner angles. Fig. 20
shows that at higher pressure, the curves slightly diverge.
However, this is associated with very small radii, which may not
be practical.
5.3. Analytical modeling efficiency

Table 3 shows CPU time comparison between FEA simulations
and analytical model. The input data for 3D-FEA simulation
using DYNAFORM and 2D-plane strain simulations were discussed
in Section 4.2. When compared with 3D-FEA simulations,
the analytical model is 12–20 times faster than FEA analysis.
Table 3 also shows that analytical model was 28–113 faster
than 2D-plane strain simulations. These comparisons do
not include the preprocessing time required to build the FEA
models, which may take considerable amount of time. This
study shows that analytical modeling can be very beneficial
in studying the influence of multiple variables (parametric
study) on the forming process, particularly, in the early design
stages.
6. Summary and conclusions

Derivation of the analytical model for planar THF has
been presented. This model can be used to predict tube
hydroformed shape, corner fill, wall thinning, and hydroforming
pressure. Furthermore, since the proposed model is based
on deformation theory with bending effects included, stress
and strain distribution across the wall thickness can be deter-
mined.

The derivation of the analytical model starts with stress
and strain analysis, where the tube wall is divided into three
layers: inside layer, middle layer, and outside layer. These
layers experience different strain and stress levels due to
combined bending and stretching. The model has been derived
such that if hoop strain values are known for the inside layer,
outside layer, and middle layers, then all the remaining state
variables (stress and strain) can be determined. To solve the
hoop strains, the boundary conditions need to be invoked.
The boundary conditions include volume constancy and initial
contact points whose hoop strain values are the same. The
problem is solved by the Newton–Raphson method as given in
Appendix A.

The analytical model was validated using FEA and THF
experiments on regular and irregular polygon dies. Two materials,
copper (Alloy 122) and stainless-steel (SS 304) tubing of various
sizes were used. This model can be used as a quick tool to study
variables of interest in THF before embarking on extensive FEA
analysis, that is, the relationships involving process variables,
material variables, and geometric variables can be evaluated
immediately.
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Appendix A. Solution scheme for equation group (56)
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ðj ¼ 1;2;3; . . . ;mÞ (A.1)

Equation group (A.1) can be rearranged and divided into two
equation groups (A.2) and (A.3). Equation group (A.2) consists of
deformed shape prediction equations, while equation group (A.3)
is derived by substituting equation group (A.2) into equation
group (A.1) such that the L1, L2, y, Lm terms are eliminated. The
solution for (A.1) is obtained in two steps. First, equation group
(A.3) is solved to obtain eQ,1, eQ,2, y, eQ,m, eN. These strain variables
obtained from equation group (A.3) are then substituted into
equation group (A.2) to obtain L1, L2, y, Lm.
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Equation group (A.3) can be solved by Newton–Raphson method as follows:
(1) Reform the equation group (A.3) into the following equation group:
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. . . ðj ¼ 1;2;3; . . . ;mÞ (A.4)
(2) Get the Jacobian matrix of F (4) Obtain ð�Q ;1; . . . ; �Q ;j; . . . �Q ;mÞ by iterating the following:
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Fig. A1. Curves of L vs eQ.
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(3) Assign initial guess to these unknown variables
ð�Q ;1; . . . ; �Q ;m; �NÞ as

�Q ;1

..

.

�Q ;j

..

.

�Q ;m

�N

2
666666666664

3
777777777775

k

�Q ;1

..

.

�Q ;j

..

.

�Q ;m

�N

2
666666666664

3
777777777775

kþ1

¼

�Q ;1

..

.

�Q ;j

..

.

�Q ;m

�N

2
666666666664

3
777777777775

k

þ Df ð�Q ;1; . . . ; �Q ;m; �NÞ
�1
k

f 1

..

.

f j

..

.

f m

f mþ1

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

k

(A.6)



ARTICLE IN PRESS

Fig. A2. Algorithm of initial guess of eQ.

C. Yang, G. Ngaile / International Journal of Mechanical Sciences 50 (2008) 1263–1279 1279
(5) When JFJoerror, stop the iterations.
In step 3, initial guess should be provided for the first iteration.

In order to obtain a reasonable initial guess for eQ,1, eQ,2, y, eQ,m,
we first study the characteristics of deformed shape prediction
equation by substituting K ¼ 500, n ¼ 0.5, b ¼ 1.15, a ¼ 60, r ¼ 50,
t0 ¼ 2, and P1 ¼ 20, P2 ¼ 40, P3 ¼ 80 into Eq. (A.7), which gives
three curves of ( L vs eQ ) shown in Fig. A1. From Fig. A1, it can be
observed that L initially decreases with increase of eQ to a
minimum value and start increasing with increase of eQ. L may
sometimes become negative. The initial guesses that lead to
negative L should be avoided. For example, initial guess between
e1 and e2 shown in Fig. A1 should be avoided. Fig. A2 shows an
effective algorithm to provide a reasonable initial guess for eQ.

L ¼ tan
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