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Flexoelectric effect, as a universal electromechanical coupling, has drawn lots of interests in

dielectric materials. However, due to the restrictions of present measurement techniques, only part

of coefficients has been experimentally examined. In this study, we derived the coordinate-

dependent Gibbs free energy density function in the inhomogeneous spatial field to investigate the

relationship between the direct and converse flexoelectric coefficients. In crystalline mediums and

systems, the direct and converse flexoelectric coefficients are proved to equivalent according to the

Maxwell relation. These results will broaden the application of the Maxwell relation into non-

linear spatial field, and provide the guideline for experimental measurement and prediction of

flexoelectric coefficients. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897647]

I. INTRODUCTION

Coupling between electrical and mechanical domains is

one of the fundamental physical phenomena that underpin the

functionality of a board range of materials and related devices.

Specifically, electromechanical interactions varying from pie-

zoelectric1,2 coupling in the non-centrosymmetrical materials

to electrostriction3,4 coupling in all crystals without any sym-

metry constraints have been widely studied and applied in

sensors, actuators, transducers, etc., over several decades.

Recently, an inhomogeneous electromechanical effect,

referred as flexoelectricity, has drawn considerable research

interests both in fundamental analysis and experimental stud-

ies.5,6 This somewhat understudied phenomenon is generally

expressed in the form of7

Pl ¼ ldir
ijkl

@Sij

@xk
or Pl ¼ f dir

ijkl

@Xij

@xk
; (1)

where Pl is the induced polarization, ldir
ijkl is the direct flexo-

electric coefficient with respect to strain gradient, a fourth-

rank tensor, Sij is the strain and xk is the axis of coordinate,

f dir
ijkl is the direct flexoelectric coefficient with respect to stress

gradient, also a fourth-rank tensor, and Xij is the stress.

The investigation regarding the flexoelectric effect was

mainly focused on crystalline solid materials,7 polymers,8

liquid crystals9 as well as biological materials such as bio-

membranes.10 The concept of flexoelectricity in liquid crys-

tals stems directly from the reorientation of irregularly

shaped polarized molecules under strain gradients caused by

splay- or bent-deformations, which is different from its

cousin effect produced by uniform strain or stress, namely

piezoelectric effect.11 The first phenomenological model

of flexoelectricity in solid dielectrics was proposed by

Kogan.12 However, in Kogan’s original paper, he still

used “piezoelectric effect” to describe this distinctive

electro-mechanical coupling effect caused by spatial deriva-

tive of strain. By comparing it with the similar phenomenon

observed in liquid crystals, Indenbom suggested later that the

term, “flexoelectric effect” should be adopted to describe this

effect.13 In principle, it is one of the fundamental properties

of crystalline dielectric materials and should be present uni-

versally in all 32 point groups and 7 Curie groups due to its

tensor nature as an even rank tensor, just like the electrostric-

tion coefficients.14,15 In principle, such tensor symmetry ren-

ders highly symmetrical materials, e.g., cubic and isotropic

materials, to yield electric polarization under inhomogeneous

mechanical field through the direct flexoelectric effect. This

greatly enhances the feasibility of flexoelectric material as

new and attractive sensing/actuating solid materials.16–18

However, theoretical values of flexoelectric constants are

estimated to be in the order of e/a (10�10 C/m), where e is

the electronic charge and a is the crystal parameter.19,20 For

most bulk materials, flexoelectric coefficients are so small

compared with piezoelectric constants, and thus, the relevant

phenomena are always unperceivable and negligible in

macro scale. In very recent years, enhanced direct flexoelec-

tric effect was found in typical high permittivity ferroelec-

trics, which were in their paraelectric phase, thus excluding

the piezoelectricity.21–23 At the same time, the unpoled

relaxor PMN-PT single crystals in the morphotropic phase

boundary were also reported to have a large pure polarization

when being bended.24 Moreover, the micro/nano scale flexo-

electric effect was proved to be extremely significant and

hence broadened the application of flexoelectricity into thin

films.25–28 Intriguingly, some special designed heterogeneous

thin films exhibited attractive physical phenomena in the

aspects of strain gradient induced hysteresis loop shift and

mechanical force induced polarization reversal, in response

to the scaling effect of flexoelectricity.29–34

In crystalline medium, the strain gradient will result in the

polarization, while on the other hand, the electric field gradient

will result in mechanical strain, as schematically shown in

Figs. 1(a) and 1(b), respectively. This effect is called the
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converse flexoelectric effect, and usually written in the tensor

form as7,35,36

Xij ¼ lcon
ijkl

@El

@xk
or Sij ¼ f con

ijkl

@El

@xk
; (2)

where El is the electric field, lcon
ijkl and f con

ijkl are the converse

flexoelectric coefficients, in response to direct flexoelectric

coefficients ldir
ijkl and f dir

ijkl , respectively. However, compared

with the direct flexoelectricity, both the experimental and the-

oretical investigation of the converse one is rather limited so

far. Initial studies reported by Fu and Cross suggested that the

strain yielded by the converse flexoelectricity was inevitably

submerged by that of electrostriction effect due to the resolu-

tion limit of strain measurement techniques.35 In this case, the

thermodynamic relationship (Maxwell relation37) between the

direct and converse flexoelectric coefficients, which is utmost

importance for investigation, may provide theoretical guide-

line for the experimental converse flexoelectric measurement.

It is well known that the previous application of Maxwell rela-

tion is concentrated on the spatial homogeneous system,

wherein the physical variables, e.g., mechanical strain and

electric field, are coordinate-independent in the whole system.

In principle, taking temperature, mechanical strain, and elec-

tric field as independent variables, the differentiation of Gibbs

free energy (G) can be written as38

dG ¼ �SdT � SijdXij � PldEl; (3)

where S (no subscript) and T (no subscript) refer to the en-

tropy and temperature of the system, respectively. Note that

this expression is in good agreement with most of the experi-

mental situations except some extreme cases,39 where addi-

tional variables should also be considered. However, for the

flexoelectric effect, the existence of strain gradient as well as

electric field gradient results in the coordinate-dependence of

the mechanical strain and electric field so that the differentia-

tion of Gibbs free energy G is not in the form of Eq. (3). In

this study, we derived the Gibbs free energy density function

in the general spatial inhomogeneous system, in order to

examine the relationship between the direct and converse

flexoelectric coefficients. This method will broaden the

Maxwell relation into inhomogeneous spatial system.

II. DIRECT AND CONVERSE FLEXOELECTRIC
COEFFICIENTS

Note that in the crystalline material systems with respect

to flexoelectricity, the electrical and mechanical variables

are always the functions of coordinates. Without loss of gen-

erality, we assume that the stress Xij, strain Sij, electric field

El, and polarization Pl are the functions of the spatial coordi-

nate axis x(x1), y(x2), and z(x3). In light of the definition of

stress-gradient-related flexoelectric coefficients f dir
ijkl , temper-

ature T, stress Xijðx; y; zÞ, and electric field Elðx; y; zÞ should

be selected as independent variables. Therefore, the Gibbs

free energy GðT;Xijðx; y; zÞ;Elðx; y; zÞÞ can be used to derive

the relationship between the direct and converse stress-gradi-

ent-related flexoelectric coefficients fijkl. In each volume in-

finitesimal, GðT;Xijðx; y; zÞ;Elðx; y; zÞÞ can be written as

GðT;Xijðx; y; zÞ;Elðx; y; zÞÞ
¼ /ðT;Xijðx; y; zÞ;Elðx; y; zÞÞdxdydz; (4)

where /ðT;Xijðx; y; zÞ;Elðx; y; zÞÞ is the volume density of

Gibbs free energy. Take the differential of /ðT;Xijðx; y; zÞ;
Elðx; y; zÞÞ, we obtain

d/ðT;Xijðx; y; zÞ;Elðx; y; zÞÞ ¼ �SdT � Sijðx; y; zÞdXijðx; y; zÞ
� Plðx; y; zÞdElðx; y; zÞ:

(5)

In order to simplify the analysis, we only consider the iso-

lated process (dT¼ 0), and thus, Eq. (5) can be rewritten as

d/ðXijðx; y; zÞ;Elðx; y; zÞÞ ¼ �Sijðx; y; zÞdXijðx; y; zÞ
� Plðx; y; zÞdElðx; y; zÞ: (6)

In the crystalline materials and systems, the variation of the

status function Xij, Sij, El, and Pl is continuous, rendering the

differentiability of the Gibbs energy density /. For Eq. (6),

take the partial differential of d/ðXijðx; y; zÞ;Elðx; y; zÞÞ with

respect to xk. It is noticed that the value of xk can stand for

any one of the spatial coordinate axis x, y, and z.

d
@

@xk
/ Xij x; y; zð Þ;El x; y; zð Þ
� �

¼ d/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ
� �

¼ � @

@xk
Sij x; y; zð ÞdXij x; y; zð Þ �

@

@xk
Pl x; y; zð ÞdEl x; y; zð Þ

¼ �S0ij xkð Þ x; y; zð ÞdXij x; y; zð Þ � Sij x; y; zð ÞdX0ij xkð Þ x; y; zð Þ
�P0l xkð Þ x; y; zð ÞdEl x; y; zð Þ � Pl x; y; zð ÞdE0l xkð Þ x; y; zð Þ:

(7)

FIG. 1. (a) Schematic view of direct

flexoelectric effect in a non-uniform

spatial system. The electric current/

polarization will be generated by the

applied force gradient. (b) Schematic

view of converse flexoelectric effect in

a non-uniform spatial system. The me-

chanical stress/strain will be generated

by the applied electric field gradient.
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Here, we assume that the stress, electric field, and their re-

spective gradients are independent variables, referring to

Ref. 26. In this case, the status functions S0ij xkð Þðx; y; zÞ,
Sijðx; y; zÞ, P0l xkð Þðx; y; zÞ, and Plðx; y; zÞ in Eq. (7) can be writ-

ten as

S0ij xkð Þ x; y; zð Þ ¼ �
@/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ

� �

@Xij x; y; zð Þ
; (8)

Sij x; y; zð Þ ¼ �
@/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ

� �

@X0ij xkð Þ x; y; zð Þ
; (9)

P0l xkð Þ x; y; zð Þ ¼ �
@/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ

� �

@El x; y; zð Þ
; (10)

Pl x; y; zð Þ ¼ �
@/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ

� �

@E0l xkð Þ x; y; zð Þ
: (11)

According to the general definition in Eq. (1), f dir
ijkl in each

spatial coordinate position (x,y,z) can be expressed as

f dir
ijkl ¼

@Pl x; y; zð Þ
@Xij x; y; zð Þ=@xk x; y; zð Þ
� �

����
El x;y;zð Þ

: (12)

Subsequently, combined with Eq. (11), the direct flexoelec-

tric coefficients can be formulated by taking the second

derivatives of energy density of Gibbs free energy

f dir
ijkl ¼ �

@2/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ
� �

@E0l xkð Þ x; y; zð Þ @Xij x; y; zð Þ=@xk x; y; zð Þ
� � jEl x;y;zð Þ:

(13)

According to the Maxwell relation, both the direct and con-

verse flexoelectric coefficients can be interrelated by the re-

versal of the order of the differentiation. Hence, we obtain

the relation

f dir
ijkl ¼ �

@2/0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ
� �

@Xij x; y; zð Þ=@xk x; y; zð Þ
� �

@E0l xkð Þ x; y; zð Þ

����
El x;y;zð Þ

¼
@Sij x; y; zð Þ
@E0l xkð Þ x; y; zð Þ

¼ f con
ijkl : (14)

On the other hand, the relationship between the direct and

converse strain-gradient-related flexoelectric coefficients

lijkl can also be demonstrated by introducing Electric Gibbs

free energy G2

G2ðSijðx; y; zÞ;Elðx; y; zÞÞ ¼ uðSijðx; y; zÞ;Elðx; y; zÞÞdxdydz;

(15)

where uðXijðx; y; zÞ;Elðx; y; zÞÞ is the Electric Gibbs free

energy density, and its differentiation can be written as

duðXijðx; y; zÞ;Elðx; y; zÞÞ ¼ Xijðx; y; zÞdSijðx; y; zÞ
� Plðx; y; zÞdElðx; y; zÞ: (16)

Take the partial differential of duðXijðx; y; zÞ;Elðx; y; zÞÞ with

respect to xk

d
@

@xk
u Xij x; y; zð Þ;El x; y; zð Þ
� �

¼ du0xkð Þ Xij x; y; zð Þ;El x; y; zð Þ
� �

¼ @

@xk
Xij x; y; zð ÞdSij x; y; zð Þ �

@

@xk
Pl x; y; zð ÞdEl x; y; zð Þ

¼ Xij x; y; zð ÞdS0ij xkð Þ x; y; zð Þ þ X0ij xkð Þ x; y; zð ÞdSij x; y; zð Þ
�P0l xkð Þ x; y; zð ÞdEl x; y; zð Þ � Pl x; y; zð ÞdE0l xkð Þ x; y; zð Þ:

(17)

Finally, we obtain the relation

ldir
ijkl ¼ �

@2u0xkð Þ Sij x; y; zð Þ;El x; y; zð Þ
� �

@Sij x; y; zð Þ=@xk x; y; zð Þ
� �

@E0l xkð Þ x; y; zð Þ

����
El x;y;zð Þ

¼ �
@Xij x; y; zð Þ
@E0l xkð Þ x; y; zð Þ

¼ lcon
ijkl : (18)

III. RESULTS ANALYSIS AND DISCUSSION

Based on above demonstration, the flexoelectric equa-

tion should be written as

I : Pl ¼ fijkl
@Xij

@xk
; Sij ¼ fijkl

@El

@xk
; (19)

II : Xij ¼ �lijkl

@El

@xk
;Pl ¼ lijkl

@Sij

@xk
: (20)

These two equations describe the flexoelectric effect in

a more general way, suggesting the stress (strain) gradient

converting into polarization and electric field gradient con-

verting into strain (stress) was coupled by the value-identical

flexoelectric coefficients. The minus sign in Eq. (20) illus-

trates that the existence of the electric field gradient results

in the applied stress smaller than nominal situation when

yielding the same strain, just like the minus sign in the piezo-

electric equation when describing the piezoelectric stress

constant.37 Note that the subscript index combination from

the fourth-rank tensor into a second-rank tensor will inevita-

bly bring a factor of 2 or 1/2, when the subscript i is different

with j. Therefore, we employ the full subscript form to clar-

ify this relationship. Presently, the experimental results

regarding the flexoelectric coefficients in crystalline materi-

als are concentrated on direct l1111 and l1122, namely longi-

tudinal and transverse coefficients, respectively.40 It is worth

noting that compared with the well-known electro-mechani-

cal couplings like piezoelectric and electrostrictive ones, the

flexoelectric coupling is somewhat weak, even in some high

permittivity perovskites. Consequently, the flexoelectric

measurement requires high resolution as well as the high sig-

nal to noise ratio.7 Based on the bending beam model15,41

and the direct stress exerting on the trapezoid configuration,7

coupling coefficients between the flexoelectric polarization

and strain gradient were experimentally verified in the single

crystals and ceramics as shown in Table I. Compared with

144105-3 Shu et al. J. Appl. Phys. 116, 144105 (2014)
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the longitudinal and transverse coefficients, the shear compo-

nent is hard to be measured because of the constrain of flexo-

electric experimental measurement. Recently, the converse

l1212 was successfully extracted by employing the AC volt-

age across the two lateral sides of the trapezoid sample.42

Due to the Maxwell relation in crystalline materials and sys-

tems, we can predict the corresponding unexamined flexo-

electric coefficients as shown in Table I. (underlined value).

In this case, our derivation provides an effective way to esti-

mate the flexoelectric coefficients, which are difficult to be

determined by the present experimental measurement.

In some extreme situations, it is more convenient to gen-

erate mechanical stress gradient compared to electric field

gradient, or vice versa. For example, in an ultrathin crystal-

line material as shown in Fig. 2(a), assume the elastic con-

stant is continuously varied along coordinate z, the applied

force results in a giant strain gradient, yielding a large elec-

tric polarization; while the applied voltage only results in a

giant uniform electric field rather than an electric field gradi-

ent, rendering no converse flexoelectric response. On the

other hand, in the ultrathin crystalline film as shown in Fig.

2(b), assuming the dielectric permittivity is a continuous

function of coordinate z, the applied electric voltage results

in a giant electric field gradient, yielding a large mechanical

displacement; while the applied mechanical force only

results in a giant uniform mechanical strain rather than an

mechanical strain gradient, rendering no direct flexoelectric

response. According to the thermodynamic relationship in

non-uniform spatial field, it is possible to extract flexoelec-

tric coefficients, irrespective of the absence of the strain

gradient or electric field gradient in some specialized materi-

als and systems.

However, for those non-crystalline material systems,

e.g., the newly developed quasiamorphous thin films,43,44 the

thermodynamic equilibrium derivation may not hold. This is

because the physical variables and mechanical variables in

non-crystalline material systems are not merely dependent

on the spatial coordinate, but also dependent on the composi-

tion variation. It is possible that, in those materials and sys-

tems, the physical variables and mechanical variables in the

volume infinitesimal are discrete, due to the composition

variation. Consequently, the prerequisite of the differenti-

ability of energy density will be unsatisfied so that the

Maxwell relation cannot be applied to these cases.

IV. CONCLUSION

In conclusion, we demonstrated the fundamental relation-

ship between the direct and converse flexoelectric coefficients

by employing a coordinate-dependent Gibbs free energy den-

sity function in the non-uniform spatial field. The flexoelectric

coefficients are derived to be equivalent through the Maxwell

relation. This result could provide guideline for experimental

measurement of flexoelectric coefficients, especially, when

some of the coefficients are difficult to be measured.
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TABLE I. Recent experimental result on flexoelectricity in single crystal and ceramics.

Material

Direct (lC/m) Converse (lC/m)

l1111 l1122 l1212 l1111 l1122 l1212

(Ba0.67Sr0.33)TiO3 ceramic21,42,45 120 100 110 120 100 110

BaTiO3 ceramic22 NA 50 NA NA 50 NA

Ba (Ti0.87Sn0.13)O3 ceramic23 NA 53 NA NA 53 NA

PZT ceramic6 NA 1.4 NA NA 1.4 NA

SrTiO3 crystal41 9� 10�3 4� 10–3 3� 10–3 9� 10–3 4� 10–3 3� 10–3

PbMg0.33Nb0.67O3 ceramic6 NA 3 NA NA 3 NA

PMN-PT crystal24 NA 35 NA NA 35 NA

FIG. 2. (a) Schematic view of a mate-

rial with the elastic constant c as a

function of z. Only the mechanical

stress/strain gradient will be generated

when both applying electric voltage

and mechanical force. (b) Schematic

view of a material with the dielectric

permittivity e as a function of z. Only

the electric field gradient will be gener-

ated when both applying electric volt-

age and mechanical force.
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