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Abstract-In this study, experiments and simulations on tissue 
ablation were performed to investigate the effectiveness of multi-
frequency focused ultrasound (FUS) with frequency differences 
more than 500 kHz (950 kHz, 1.5 MHz and 3.3 MHz FUS). In 
tissue ablation tests, temperature rise was recorded when chicken 
breast tissue was ablated by FUS with single-frequency and mul-
ti-frequency ultrasound, respectively, at controlled acoustic pow-
er and exposure time. Simulations have been performed to verify 
the temperature change and distribution in these tests. Distinct 
temperature rise differences were observed between single-
frequency modes and dual-frequency modes, indicating that du-
al-frequency FUS is more effective on the rate of temperature rise. 
This finding is promising for ultrasound surgery. 
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I.     INTRODUCTION 

Scientific studies involving high-intensity focused 
ultrasound (HIFU) as a possible therapy option for several 
types of tumors have been published for about half a century. 
Ultrasound has the potential to provide a truly non-invasive 
target treatment option, which is not limited to the direct 
treatment of cancers, but may also be used in palliative setting 
for relief of chronic pain of malignant origin, for hemostasis, 
or even for the treatment of cardiac conduction or congenital 
anomalies [1].  

In tissue ablation, HIFU causes tissue damage through two 
primary mechanisms. The first is considered to be thermal 
effects. Intense acoustic energy is delivered to a small region 
of tissue, where the absorption process raises the tissue 
temperature to a relatively high value and causes thermal 
coagulation and ablation of cells [2]. The second is through 
cavitation. Ultrasound can cause tissue vibration, resulting in 
compression and rarefaction at the molecular level. During 
rarefaction, gas can be drawn out of solution to form bubbles. 
When these bubbles collapse, it is accompanied by the release 
of a high concentration of energy which results in high local 
acoustic pressure and the propagation of shock waves. These 
manifest as high temperature within the insonated tissue. 

When the tissue temperature rises to over 60 ºC for 1 second, 
rapid thermal toxicity is introduced, causing irreversible cell 
death through coagulative necrosis. Hence, a tissue lesion is 
formed. Although there are still many on-going discussions on 
other possible HIFU ablation mechanisms, the broadly 
accepted tissue ablation theory is that biologic effects of FUS 
on the targeted tumor are the combination of both thermal 
effects and cavitation, and the main mechanism of damage is 
heat necrosis [1, 3]. 
    Despite the success of HIFU for many tumor ablations, 
unwanted lesion volume has hindered the full realization of 
the benefits of FUS as a therapy option. In order to obtain 
tissue ablation with steeper temperature rise and enlarged 
lesion volume, dual-frequency FUS has been studied in recent 
years by a few groups [4-6]. The dual-frequency experiments 
were carried out by simultaneously irradiating porcine liver 
regions of interest with confocal ultrasound transducers at 
1.563 MHz and 1.573 MHz [4]. It was found that dual-
frequency FUS induces larger lesions than conventional single 
frequency FUS under the same power density. It was believed 
that the cavitation effect is more pronounced in the multi-
frequency mode, which was well presented in the work done 
by Tatake et al [7]. Another possible explanation offered by 
Iernetti et al is the production of larger number of air bubbles 
by the introduction of the low-frequency (20 kHz) stimulating 
field, which aids in the cavitation effect [8]. Carpendo et al 
correlated  the effect of dual-frequency excitation and the 
increase in heating effects to the combination resonance of the 
two ultrasonic fields [9]. It is noticed that these reported dual-
frequency ablation experiments either used dual frequency 
with the lower frequency transducer in the 10-500 kHz range, 
or with the frequency difference less than 50 kHz.  

In this paper, tissue ablation using multi-frequency FUS 
with frequency differences greater than 500 kHz was studied 
to investigate the effects of different governing parameters on 
the temperature rise during controlled therapeutic insonation. 
These parameters include the transmission frequency and the 
acoustic power exposure. 
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Fig. 6. Measured change in chicken tissue temperature with exposure time for 
single frequency and multifrequency (1.5 MHz and 3.3 MHz)  tests under 15 
W total input power, and 5 mm DOF 
 
temperature and faster temperature rise can be obtained by 
using a dual-frequency mode. 

Similar to the previous observation from multifrequency 
ablation using different frequencies and tissue materials [4],  
dual-frequency ultrasound can generate higher temperatures 
under the same exposure condition may be attributed to the 
cavitation yield at different frequencies, even when frequency 
difference is greater than 500 kHz. The frequency differences 
in multi-frequency mode may result in a low-frequency 
homogeneous acoustic wave, which will enhance the cavitaion 
effect, according to Iernetti and Feng [13,14]. A combination 
of two different frequencies may even result in the formation 
of constructive and destructive interference patterns that 
composed of waves with a wide range of different frequencies 
and pressure amplitudes. Cavitation is a random frequency 
dependent phenomenon, and thus the generation of waves of 
width different frequencies increases the chance of more 
efficient energy dissipation during cavitation. 

 
IV.     CONCLUSION 

 
    Tissue ablation using multi-frequency FUS can generate 
higher temperature rise and larger lesion volume when 
compared with ablation using single frequency under the same 
exposure condition, which will lead to a more effective FUS 
ablation approach. Furthermore, the multi-frequency 
ultrasound ablation using FUS with a larger frequency 
difference may lead to promising imaging guided therapy 
using one multi-frequency probe. 
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