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Abstract: Karl Schwarzschild’s landmark paper revealed the first ever exact solution to Einstein’s

gravitational field equation. This was a major scientific achievement. However, his solution for the

metric of a spherically symmetric spacetime is different than the one found in textbooks today—

because Schwarzschild assumed, like in Newtonian gravity, that only one singularity could exist.

Given the newness of Einstein’s general theory of relativity and the existing paradigm of

Newtonian gravity, his assumption was natural. While other authors have previously pointed out

this shortcoming and corrected it, the contribution of this paper is to show how Schwarzschild

might have discovered it himself. A simple geometric proof indicates how Schwarzschild, with a

different assignment of a single constant of integration, would have arrived at the metric found in

textbooks today. VC 2024 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-37.1.74]

R�esum�e: L’article historique de Karl Schwarzschild r�evèle la toute première solution exacte de

l’�equation du champ gravitationnel d’Einstein. Ce fut une r�ealisation scientifique majeure.

Cependant, sa solution pour la m�etrique d’un espace-temps �a sym�etrie sph�erique est diff�erente de

celle trouv�ee dans les manuels scolaires aujourd’hui – parce que Schwarzschild supposait, comme

dans la gravit�e newtonienne, qu’une seule singularit�e pouvait exister. Compte tenu de la nouveaut�e
de la th�eorie de la relativit�e g�en�erale d’Einstein et du paradigme existant de la gravit�e newtonienne,

son hypothèse �etait logique. Alors que d’autres auteurs ont d�ej�a soulign�e cette lacune et l’ont

corrig�ee, la contribution de cet article est de montrer comme Schwarzschild aurait pu la d�ecouvrir

lui-même. Une simple preuve g�eom�etrique indique comme, avec une affectation diff�erente d’une

seule constante d’int�egration, Schwarzschild serait arriv�e �a la m�etrique trouv�ee dans les manuels

scolaires aujourd’hui.
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I. INTRODUCTION AND MOTIVATION

In November of 1915, Einstein was in the last throes of

completing his general theory of relativity. He had just been

able to show that his theory matched the non-Newtonian

behavior exhibited by the orbit of Mercury. At that time,

Karl Schwarzschild was both the director of the Astrophysi-

cal Observatory at Potsdam and a soldier serving in WWI.

While on leave from his service in WWI, Schwarzschild

attended one of Einstein’s lectures1 revealing his new theory.

Einstein clearly impressed Schwarzschild who continued to

digest his theory after returning to the eastern front. Only a

few months later in early 1916, Schwarzschild startled Ein-

stein with the first-ever exact solution to his gravitational

field equation. He had reason to be surprised because

Schwarzschild showed that a closed form solution could

exist for Einstein’s coupled set of ten non-linear second-

order partial differential equations which describe gravity as

curved spacetime.

Indeed, the majority of Schwarzschild’s 1916 paper2 is a

masterful demonstration of physics and mathematics. How-

ever, by assuming that only one singularity existed, he misi-

dentified the location of the origin of his coordinate system.

A 1999 English translation2 of Schwarzschild’s paper cre-

ated renewed interest in his contribution. (A usable but infe-

rior Wikipedia translatione) is also accessible.) A historical

perspective3 discusses how alternative derivations by Hil-

bert, Droste, and others contributed to the form of the metric

found in textbooks4–6 today. Clearly, the physics community

has moved beyond Schwarzschild’s original solution and

today celebrate the achievement with his name attached to

the most common metric used for a non-spinning spherical

gravitational source.

The contribution of this paper is to show how Schwarzs-

child might have discovered and fixed the problem with his

metric. In Section II, we present the metric and thea)lanerossmiller@outlook.com
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corresponding equations of motion for a particle as provided

in his 1916 paper.2 Section III shows how Schwarzschild

could have suspected that there was a problem in his derived

metric by examining the predicted behavior of freely falling

particles. Section IV shows in a new and novel manner pre-

cisely the cause of the problem, and provides a simple and

conclusive proof that Schwarzschild misidentified the loca-

tion of the origin of his coordinate system and the point grav-

itational source. Also, as others have done, we show how

Schwarzschild’s solution could have matched the present-

day solution by a simple change in the assignment of a con-

stant of integration. Section V provides more historical back-

ground and concluding remarks. To make it easy for the

reader, the nomenclature used throughout this paper matches

Schwarzschild’s 1916 paper,2 even though some his nomen-

clature is different than what is broadly used by the physics

community today.

II. THE METRIC AND EQUATIONS OF MOTION FROM
SCHWARZSCHILD’S 1916 PAPER

To review the solutions to Einstein’s field equation for a

static spherically symmetric spacetime, the reader is referred

to Weinberg’s book.7 In his book, Weinberg provides solu-

tions to this problem in isotropic and harmonic coordinates

in addition to the commonly found coordinates in today’s

textbooks.4–6 In particular, the harmonic coordinate solution

that Weinberg provides is the same metric structure as

Schwarzschild’s “rectangular coordinates” mentioned early

in development of his paper.2 The field equation solved by

Weinberg is the commonly found4–6 fully covariant form

involving the vanished Ricci tensor.

One important part of history that complicated

Schwarzschild’s derivation and possibly contributed to the

problem with his metric was the fact that he used an early

version8 of Einstein’s field equation that was not fully covar-

iant. This early version required the coordinate condition

g ¼ �1; (1)

where g ¼ detðgltÞ with glt being the metric components.

Because of this requirement, Schwarzschild cleverly

employed a “trick” involving a transformation2 to conform

to Eq. (1). After using transformed coordinates and proceed-

ing through challenging calculations, he arrived at his metric

ds2¼ 1� a
R

� �
dt2� 1

1� a
R

� �dR2�R2 d#2þ sin2#d/2
� �

;

(2)

where

R ¼ r3 þ a3ð Þ
1
3 (3)

over the domain

0 < r <1: (4)

In Eqs. (2)–(4), s is proper time and the speed of light is

assumed to be unity. By requiring equivalence with Newtonian

theory far from the source, Schwarzschild’s constant a is found

to be a ¼ 2GNM, where GN is Newton’s universal gravitation

constant and M is the mass of the point source. r is the radial

coordinate, # and / are the polar and azimuthal angles used to

describe a spherical geometry, and t is the time coordinate. By

setting dr ¼ d# ¼ d/ ¼ 0 in the metric, t can be shown to be

the proper time as measured by a stationary observer far from

the source. In his paper, Schwarzschild did not explicitly spec-

ify the domain of r given in Eq. (4). However, this was clearly

his intent because he specifically assigned r ¼ 0 to be where he

thought the origin of the coordinate system and the point mass

source are located. This assignment is evident in the discussion

of his Eq. (13).2 It will be shown that Schwarzschild mistakenly

identified the origin of his coordinate system, resulting in a

metric different from that found in textbooks today.

While at first glance Eq. (2) may look identical to the

metric commonly found in textbooks,4–6 it is not because the

definition of Eq. (3) and the domain of r in Eq. (4). It is inter-

esting to note that Schwarzschild never referred to R as a

coordinate, calling it an “auxiliary quantity” in the discus-

sion after his Eq. (13).2 Clearly, one purpose of R defined in

Eq. (3) is to reduce the mathematical complexity of the met-

ric. If we substitute Eq. (3) into Eq. (2), we get

ds2 ¼ 1� a

r3 þ a3ð Þ
1
3

� �
dt2

� r4

r3 þ a3ð Þ r3 þ a3ð Þ
1
3 � a

h i dr2

� r3 þ a3ð Þ
2
3 d#2 þ sin2#d/2
� �

:

(5)

Equation (4) also defines the domain of r used in Eq. (5).

In the mathematical development that follows, Eqs. (2)–(4)

will be used interchangeably with Eqs. (4) and (5).

In his paper, Schwarzschild also provided the following

equations of motion:

1� a
R

� �
dt

ds

� �2

� 1

1� a
R

� � dR

ds

� �2

� R2 d/
ds

� �2

¼ const: ¼ h ¼ 1; (6)

R2 d/
ds
¼ const: ¼ c; (7)

and

1� a
R

� �
dt

ds
¼ const: ¼ 1: (8)

With # ¼ p=2, these equations assume that the motion

of a freely falling particle is in the equatorial plane. Equation

(6) is easily arrived at by dividing Eq. (2) through by ds2. As

such, Schwarzschild’s constant h must be 1. Physically, h is

the square of the speed of light, not angular momentum as

often used in today’s nomenclature. Equations (7) and (8)

are constants of motion derived using the Euler–Lagrange

equations. The constant c in Eq. (7) is not to be confused
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with the speed of light. The constant of 1 in Eq. (8) applies

only for a particle released from rest at infinity or moving

well below the speed of light when far from the source. This

constant of 1 is arrived at by letting r !1 and setting

dt=ds ¼ 1 for the initially stationary particle.

III. CLUES THAT A PROBLEM EXISTED

It is only natural that Schwarzschild would have viewed

the gravity described by his metric from the perspective of

his knowledge of Newtonian gravity. Since Newton’s gravi-

tational potential has a single singularity at a point mass

source, it was not unreasonable for him to assume that only

one singularity could exist in his metric. In fact, Schwarzs-

child explicitly required only one singularity as indicated in

his list of conditions immediately after his Eq. (9).2

By exploring the trajectories of freely falling particles,

Schwarzschild could have gained a sense that general relativ-

istic gravity is different than Newtonian gravity, particularly

near the point source. He could have discovered that differ-

ence by scrutinizing Eqs. (2)–(8). He used those equations

but could very well have been focused on showing that his

exact solution agrees with Einstein’s approximate calcula-

tion for the precession of Mercury’s orbit in a weak field.

Indeed, had he explored the entirety of his spacetime with

these equations, he would have discovered some surprising

results. For example, he could have verified that a stationary

clock close to the source runs slower than a stationary clock

far from the source.6 This would not have been a surprise to

Schwarzschild, because Einstein predicted this behavior in

1907.9 Furthermore, Schwarzschild armed with his exact

solution would have concluded that time stands still or

freezes for a clock at r ¼ 0, where he believed the source to

be, when compared to a stationary clock far from the source.

This would have been a startling result for Schwarzschild to

discover, but again it was not inconsistent with Einstein’s

earlier prediction of gravitational time dilation. Also, he

would have found that a radially falling particle decelerates

and comes to rest as it approaches the source when the

motion is expressed in terms of the r and t coordinates. This

result says that it takes an infinite amount of time,10 as mea-

sured by an observer far from the source, for the particle to

reach r ¼ 0. Concerned that such behavior is not at all found

in Newton’s theory, Schwarzschild might then have won-

dered what a stationary observer near the source would have

measured the same particle’s speed to be. Again, using Eqs.

(2)–(8), Schwarzschild would have found such an observer

to measure the speed of the same particle to approach the

speed of light.10 This would have probably been accepted as

a reasonable result because it supported Einstein’s assertion

that the local spacetime must conform to special relativity11

with the speed of a particle limited to be less than the speed

of light. Up to this point in his analysis, Schwarzschild

would have discovered some astonishing but explainable

behavior, particularly near where he believed his point

source is located. However, without having gone in that

direction, some troubling behavior would emerge when one

presses forward and further studies the behavior of freely

falling particles near where he thought the source to be

located.

Of immediate concern should have been Eq. (7). When a

particle with a nonzero tangential velocity passes infinitesi-

mally close to the origin of a polar coordinate system, the

angular velocity must approach infinity. Referring to the

illustrative example of Fig. 1, the reason that the angular

velocity approaches infinity is as follows. As shown, the par-

ticle’s path, as it passes the origin, makes a right triangle

with sides x and y (the rectangular coordinates), and hypote-

nuse r and angular displacement / (the corresponding polar

coordinates). When passing the origin, / sweeps

nearly 180�. Over an instant of time ds, the particle’s speed

is v ¼ dy=ds ¼ dðx tan /Þ=ds or v ¼ xðd/=dsÞ cos�2/, from

which the angular rate is d/=ds ¼ ðv=xÞ cos2/. Just as it

passes the origin, / ¼ 0 and the distance r from the origin

assumes its smallest value of x, during which it follows as x
goes to zero that d/=ds ¼ v=r ¼ v=x becomes infinite. This

behavior is purely a result of geometry and applies equally

well to the local geometry of curved spacetime.

However, a different behavior is predicted in Eq. (7),

which is Eq. (16) in Schwarzschild’s paper.2 As previously

stated, this equation is a constant of motion that results

directly from the Euler–Lagrange equations with constant c
being analogous to angular momentum. When combined

with Eq. (3), Eq. (7) can be written as

d/
ds
¼ c

r3 þ a3ð Þ
2
3

: (9)

This equation can be interpreted as the angular displace-

ment d/ swept during a short time period ds as measured by

a clock attached to the falling particle. Considering particle

trajectories with a nonzero value for c (recall constant c is

not the speed of light) passing ever closer to where he

believed the source and origin of his coordinate system to be

located, Schwarzschild should have been troubled by the

angular velocity not approaching infinity. In fact, as shown

in Eq. (9), as r ! 0 the angular speed jd/=dsj ! c=a2,

which is clearly a finite value for a 6¼ 0. This behavior sug-

gests an underlying problem with Schwarzschild’s under-

standing of the geometry represented by his metric.

Schwarzschild could have found other concerning

behavior with his metric by studying a particle dropped from

FIG. 1. Illustrative example of a particle passing near the origin.
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rest at infinity. To fully explain how that concern arises, a

brief review of Newtonian behavior is in order. In Newtonian

gravity, a particle dropped from rest from a radial distance

rNd from the point source has velocity10

drN

dtN

� �2

¼ a
1

rN
� 1

rNd

� �
; (10)

where rN is the radial distance from the source that the parti-

cle reaches and tN is Newton’s universal time. Differentiat-

ing this equation with respect to tN produces Newton’s

inverse square law. If the particle is dropped from rNd ¼ 1,

Eq. (10) becomes

drN

dtN
¼ �

ffiffiffiffiffi
a
rN

r
: (11)

This equation can be separated and integrated. If we let

tN ¼ 0 when rN ¼ rNo, then we get

tN ¼
2

3

ffiffiffiffiffiffiffi
r3

No

a

r
�

ffiffiffiffiffi
r3

N

a

r !
: (12)

It is interesting that this formula is only valid for rN � 0.

Schwarzschild could have considered the same scenario

for his metric. By substituting Eq. (8) into Eq. (6) with

d/=ds ¼ 0, he would have obtained

dR

ds
¼ �

ffiffiffi
a
R

r
: (13)

Equation (13) resembles Eq. (11) and can be identically

separated and integrated. Substituting Eq. (3) into the result

of the integration, he would have derived

s ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3

0 þ a3

a

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 þ a3

a

r !
; (14)

where the interval of integration starts with proper time s ¼
0 as the falling particle passes through finite radial coordi-

nate ro. An interpretation of Eq. (14) is the time s of a clock

attached to the particle as it falls through radial coordinate

values. Schwarzschild would have noticed that s will con-

tinue to grow as the particle passes through r ¼ 0, where he

believed his point source to be located. In fact, Eq. (14) has

no problem calculating the proper time of the particle as it

passes through negative values of radial coordinate r until

the particle arrives at r ¼ �a! This is shown in the graph of

Fig. 2 where the proper time was set to s ¼ 0 when the parti-

cle dropped from infinity passes through radial coordinate

ratio r=a ¼ 2.

As shown in the graph, the particle passes r ¼ 0 where

Schwarzschild believed the point gravitational source to be

located. A clock attached to the particle continues to accu-

mulate proper time for the dashed portion of the trajectory

until it reaches r ¼ �a. Clearly, the negative radial coordi-

nate values of the falling particle, shown in dashed line, are

part of its geodesic. Figure 2 and the analyses of Eqs. (9) and

(14) provide compelling circumstantial evidence that there

was a problem with Schwarzschild’s identification of the ori-

gin of his coordinate system and location of his point source.

IV. IDENTIFYING AND FIXING THE PROBLEM

If Schwarzschild had done the study of freely falling par-

ticles in Section III, he would have been motivated to take

another look at the geometry of his metric of Eqs. (2)–(4), or

equivalently Eqs. (4) and (5). Due to the spherical symmetry,

angles # and / have the same meaning in the flat space of

Newtonian gravity as in the curved spacetime which

Schwarzschild’s metric was intended to describe. In the

spacetime represented by Schwarzschild’s metric, a curve

with a constant radial coordinate in the equatorial plane is a

circle. Using # ¼ p=2, dt ¼ dr ¼ d# ¼ 0 and setting ds2 ¼
�dr2 with r being the proper spatial length, Schwarzschild

would have reduced Eq. (5) to

dr ¼ r3 þ a3ð Þ
1
3d/: (15)

Integrating this with constant r over a complete revolu-

tion of /, Schwarzschild would have derived

r ¼ r3 þ a3ð Þ
1
3

ð2p

0

d/ ¼ 2p r3 þ a3ð Þ
1
3 (16)

for the circumference of a circle centered on the origin. This

calculation only involves the geometry of Schwarzschild’s

spacetime and not the motion of a particle. The troubling

result from Eq. (16) is that it indicates that a circle with a

“radius” of radial coordinate r ¼ 0 has a nonzero circumfer-

ence r ¼ 2pa! In fact, values of r for the range �a < r < 0

produce positive circumferential length. Only when r ¼ �a
will r ¼ 0, yielding a circle with no circumference, i.e., a

point. This proves that the origin of Schwarzschild’s coordi-

nate system is at r ¼ �a, despite the oddity of r being nega-

tive. Furthermore, since spacetime is spherically symmetric

the source must be located there as well. This conclusion is

at odds with Eq. (4) and indicates that the domain of Eq. (4)

does not capture the entirety of the spherically symmetric

FIG. 2. Proper time versus the radial coordinate after the particle passes

through r=a ¼ 2.
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spacetime. It is interesting to note that if he would have

strictly adhered to the desired metric form2 of his Eq. (6),

Schwarzschild would have then avoided this issue entirely,12

since he would have found that a circle would have had cir-

cumference r ¼ 2pr
ffiffiffiffi
G
p

where G was intended to be a yet-

to-be-determined function of r. Equation (6) of his paper

would have required the circumference of a circle to be zero

when the radial coordinate is zero, which as we have just

demonstrated is not the case for Eq. (5).

If the domain of r in Eq. (4) is ignored, Fig. 3 shows the

corrected relationship between R and r in the equatorial

plane of # ¼ p=2.

As shown, the radial line A makes an angle /. The coor-

dinates r and R identify points along the radial line. We can

see that r ¼ 0 and R ¼ 0 do not represent the same point.

The circle defined by r ¼ 0 and R ¼ a has a circumference

of r ¼ 2pa as required by Eqs. (3) and (16). The coordinate

values r ¼ �a and R ¼ 0 define a point, that is, a circle hav-

ing a circumference of r ¼ 0. This point is where the gravi-

tational source must be located to create a spherically

symmetric spacetime. The frozen clock and the falling parti-

cle decelerating to zero coordinate speed discussed at the

beginning of Section III both occur at coordinate values r ¼
0 and R ¼ a. These behaviors are associated with the event

horizon, a term13 that was created many years after

Schwarzschild’s paper. Further, Fig. 3 resolves the conun-

drum associated with Eqs. (9) and (14). Letting r ! �a in

Eq. (9) causes the angular velocity to approach infinity as

was required. Enlarging the domain to include �a < r � 0

explains the additional proper time experienced by the radi-

ally falling particle predicted by Eq. (14). Also, Fig. 3 dem-

onstrates that Eq. (3), which can be taken to be the

transformation between the radial coordinates r and R, does

not allow a simple translation of the origin from one point to

another.

Armed with this new understanding, Schwarzschild

could have interpreted the radial coordinate correctly by just

assigning a different value to his integration constant q in his

Eq. (12). Instead of assigning q ¼ a3 in his Eq. (13)2 based

upon his belief that only one singularity could exist, he

should have assigned q ¼ 0 based upon the geometry of his

coordinate system. This would have resulted in a metric as

given by

ds2 ¼ 1� a
r̂

� �
dt2 � 1

1� a
r̂

� � dr̂2

� r̂2 d#2 þ sin2#d/2
� �

(17)

with new radial coordinate r̂ having the domain

0 < r̂ <1: (18)

This is the metric found in all textbooks4–6 today. It includes

two singularities at r̂ ¼ 0 and at r̂ ¼ a. Note that r̂ is used here

to distinguish it from Schwarzschild’s radial coordinate; how-

ever, modern textbooks simply use r, not to be confused with

the radial coordinate in Schwarzschild’s original paper.

V. HISTORICAL PERSPECTIVE AND CONCLUSIONS

Both Eqs. (2) and (5) are indeed solutions to Einstein’s

covariant field equation, which is Schwarzschild’s great

accomplishment. However, it was the misidentification of

the origin of his coordinate system, and therefore the loca-

tion of his point source, that results in a discrepancy between

Schwarzschild’s metric and the metric found in today’s text-

books. This misidentification of the origin led to the trun-

cated domain of Eq. (4) and the exclusion of the region

directly adjacent to the point source. As shown in Sections

III and IV, everything was present in Schwarzschild’s paper

to be able to correctly identify the origin of his coordinate

system and the location of the point source.

The early version of Einstein’s theory, which included

the coordinate condition of Eq. (1), may have contributed to

Schwarzschild embracing r as the true radial coordinate,

leaving the auxiliary quantity R as only an intermediate cal-

culation. However, Schwarzschild being an obviously gifted

scientist and mathematician would have surely considered

Eq. (3) to be a valid coordinate transformation. It is difficult

to believe that he did not find it tempting to identify R ¼ 0 as

the origin of his polar coordinate system. It appears that

Schwarzschild’s overriding belief that only one singularity

could exist must have led him to incorrectly identify the ori-

gin of his coordinate system. There is reason to suspect that

Schwarzschild added condition number 4 following his Eq.

(9) after his derivation in order to justify his identification of

the location of the origin and point source. It would be years

before the correct form of the metric in Eq. (17) with two

singularities would be understood. The modern understand-

ing14 of Eqs. (17) and (18) is that a physical or geometric sin-

gularity exists at r̂ ¼ 0, the location of the source, and that a

coordinate singularity exists at r̂ ¼ a, the location of the event

horizon. Additionally, it can be shown that the curvature is

singular at the source but well behaved at the event horizon.15

The concept of a blackhole, which Eq. (4) excludes, took dec-

ades16 after Schwarzschild’s paper to take root.

Some17 have questioned whether Schwarzschild’s name

should be associated with the metric found in textbooks

today, because his metric excluded the region �a < r � 0.

On the other hand, others18 may be overly forceful in defend-

ing Schwarzschild’s legacy by asserting technical arguments

that try to justify some of the shortcomings found in his 1916FIG. 3. The geometric relationship between r and R.
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paper. Science as it advances often does not get everything

perfect from the start, particularly when revolutionary ideas

are involved. Certainly, Einstein’s own journey toward gen-

eral relativity involved notable missteps.8 It is with this true

nature of discovery that we are more than comfortable with

Schwarzschild’s name being identified with the famous first

exact solution to Einstein’s field equation, even if all the

details in his paper were not perfect.

1M. Stanley, Einstein’s War (Penguin Random House, UK, 2020), pp.

149–163.
2K. Schwarzschild, Phys. Math. Klasse 189, 189 (1916); English translation

as a Golden Oldie: Gen. Relativ. Gravitation 35, 951 (2003).
3S. Antoci and D. E. Liebscher, Astron. Nachr. 322, 137 (2001).
4M. P. Hobson, G. Efstathiou, and A. N. Lasenby, General Relativity: An
Introduction for Physicists (Cambridge University Press, New York,

2006), pp. 196–202.
5J. B. Hartle, Gravitation (Addison Wesley, San Francisco, CA, 2003), pp.

186–189.

6T. A. Moore, A General Relativity Workbook (University Science Books,

Mill Valley, CA, 2013), pp. 106–109.
7S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, New

York, 1972), pp. 175–182.
8J. Norton, Hist. Stud. Phys. Sci. 14, 253 (1984).
9A. Pais, Subtle is the Lord (Oxford University Press, Oxford, UK, 1982),

pp. 180–183.
10Ref. 4, pp. 209–211.
11R. E. Kennedy, A Student’s Guide to Einstein’s Major Papers (Oxford

University Press, New York, 2012), pp. 175–178.
12A. Antoci and W. Schroder, Meteorological and Geophysical Fluid

Dynamics (Science Edition/Arbeitskreis Geschichte der Geophysik und

Kosmischen Physik, Bremen, 2004).
13B. Smethurst, A Brief History of Black Holes (Macmillan Publishers, Lon-

don, 2022), pp. 114–119.
14Ref. 6, pp. 168–171.
15Ref. 4, pp. 249–250.
16Ref. 13, pp. 7–11.
17S. Antoci and D. E. Liebscher, Gen. Relativ. Gravitation 35, 945

(2003).
18J. M. M. Senovilla, Gen. Relativ. Gravitation 39, 685 (2007).

Physics Essays 37, 1 (2024) 79

http://dx.doi.org/10.1002/1521-3994(200107)322:3<137::AID-ASNA137>3.0.CO;2-1
http://dx.doi.org/10.1023/A:1022919909683
http://dx.doi.org/10.1007/s10714-006-0326-x

	s1
	cor1
	cor2
	cor3
	cor4
	FN1
	s2
	eq1
	eq2
	eq3
	eq4
	eq5
	eq6
	eq7
	eq8
	s3
	eq9
	F1
	eq10
	eq11
	eq12
	eq13
	eq14
	s4
	eq15
	eq16
	F2
	eq17
	eq18
	s5
	F3
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18

