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The solution is obtained by superposing certain fundamental linear elastic stress
states which are compatible with bar and beam theory. The analytical results are
approximate in the sense that stress-free boundary conditions are not satisfied ex-
actly, since only zero resultant force and moment conditions are enforced. Finite

element calculations have been performed to verify the results and to ascertain the
level of stress concentration near the ends of the strip.

Introduction

It has long been known that structures subjected to non-
uniform temperature change, or structures constructed by
bonding two or more materials and then subjected to tem-
perature change (be it spatially uniform or nonuniform), will
be in a state of thermal stress. Many investigators have pre-
sented stress calculations for these types of structures (Born
and Horvay (1955), Durelli and Tsao (1955), Goldberg (1953),
Goodier (1936)). Recently, much attention has been focused
on the problem of predicting the thermal and residual stresses
in multilayered electronic components Barnett (1986), Evans
and Hutchinson (1984), Glang, et al. (1965), Hu (1979), Isomae
(1981), Vilms and Kerps (1982), Suhir (1986, 1988)). Each of
these investigations addressed the stresses in the structure dur-
ing spatially uniform heating or cooling. Timoshenko’s (1925)
classic paper investigated the similar case of bi-metal ther-
mostats subjected to a spatially uniform temperature change.
In his analysis, Timoshenko acknowledged the existence of
certain interfacial shear and normal ‘‘edge-effect’’ stresses,
but did not provide solutions for them. Suhir (1986, 1988)
recently presented solutions for the stresses in the bi-metal
thermostat and multi-layer thin-film configurations that enable
the investigator to approximate the shear and peeling stresses
at the interface of the two metals.

The present paper presents formulas for the deformation
and stress state in a bimaterial strip subjected to a temperature
gradient which varies linearly in the longitudinal direction. The
solution of this problem is obtained with the use of bar and
beam theory, together with basic elements from the theory of
elasticity. As stated above, previous analyses dealt only with
a spatially uniform temperature change. The linear tempera-
ture variation assumed in this work is meant as an extension
of earlier investigations, and as a first step in understanding
the effects of nonuniform heating or cooling. Materials are
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assumed isotropic, and the physical properties (Young’s mod-
ulus and the coefficient of thermal expansion) are assumed to
have unique values in each layer.

The solution consists of the superposition of three distinct
deformation/stress analysis problems. The first step is to sep-
arate the layers of the structure, allowing each'layer to deform
independently due to the assumed temperature gradient. In the
second step a set of elastic displacements is imposed on each
layer eliminating the relative displacement occurring in the first
step. The third step then involves the application of a set of
forces and bending moments which result in zero net resultant
force and moment on the free surfaces of the structure. It is
important to note that the solutions for the stresses and are
only approximate, since the third step requires only resultant
forces and moments at the free surfaces be zero, and not the
stresses themselves. Thus, the solution for the strip is accurate
within bar and beam theory (‘‘strength of materials’’), but
does not satisfy elasticity theory exactly in the region near the
ends of the strip. However, the results are useful in obtaining
preliminary design estimates of the stress and deformation
states. Furthermore, the results of the analysis have béen spec-
ialized for the case of a thin film/substrate configuration.

Description of the Problem

Consider the bimaterial strip of total length 2L shown in
Fig. 1, consisting of a film bonded to a substrate. The ensuing
analysis places no restrictions on the relative thicknesses of the
two layers, however, ultimately the technologically important
configuration of a ‘‘thin’’ film bonded to a much thicker
substrate will be of interest. A Cartesian coordinate system is
chosen such that the xz plane (location unknown a priori)
defines the neutral surface of the strip, and the yz plane is
located at a distance equal to L from either end. The thicknesses
of the film and substrate are denoted by #,and ¢, respectively,
while the total thickness of the strip is ¢. A subscript (or su-
perscript) f will be used to denote dimensions, material prop-
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Fig. 1. Geometry and dimensions of the bimaterial strip
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Fig. 2 Temperature distribution assumed for thermal stress analysis

erties, stresses, or deflections associated with the film and s
will be used for those quantities associated with the substrate.
The width of the strip in the z direction is b, consequently the
cross-sectional area of the bimaterial strip is bf. Attention will
be focused on a long narrow strip where b, t < < L. Thus,
the strip will be expected to deform according to beam theory
and be in a state of plane stress respecting the xy plane, thus,
0, = 0y = 6, = 0. In addition, according to the assumptions
of bar and beam theory, the normal stress ¢,, = 0. Two
material properties enter the analysis. These are Young’s mod-
ulus E, and the coefficient of thermal expansion (CTE) «.

The most general mathematical expression for a linear tem-
perature gradient in the x direction is

AT(x) =AT0+ATL% )

i.e., a linear combination of a constant term and a term pro-
portional to x. The symbols AT, and AT; represent constants.
Timoshenko (1925) has solved the problem dealing with a
spatially uniform temperature change, whereby AT; = 0. For
this study, the stresses and displacements arising from the
second term in equation (1) will be investigated, i.e.

AT(x)=AT, % 1)

Thus, the results of this work and Timoshenko’s analysis could
be superposed to yield the solution to a problem where the
temperature varied according to equation (1). Figure 2 depicts
the temperature distribution assumed for the present analysis.

The primary objective now is to derive formulas for the
transverse deflection in each layer as well as the longitudinal
and shear stress components.

Solution Formulation

A combination of classical bar and beam theory together
with basic elements of elasticity theory is used to solve this
problem. The solution will be obtained by superposing certain
fundamental linear elastic stress and deformation states whose
sum results in proper displacement and stress continuity across
the film/substrate interface and force/moment resultant-free
conditions on the end cross sections of the strip (i.e., at x =
+L).
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Fig. 3 Loadings on cantilever beam

Step 1. The first fundamental solution involves considering
the film and substrate as separate layers subjected to the linear
temperature distribution given above. Since each layer has a
unique CTE, each experiences a unique thermal strain,

X pe
] = AT, 7 = AT, = G, 49

The resulting axial displacements #"" (x) are

u}"(x)=(9‘ffTTL)x2 u;"<x)=("—2LT—L)x2 s, 6)

where it has been assumed that 4/'(0) = u#(0) = 0. Notice
that equations (5, 6) indicate a relative displacement between
the layers as a result of the different CTE’s.

Step 2. Ultimately, the deformation of the two layers must
be compatible, requiring that the relative displacement between
the two layers introduced in Step 1 be eliminated by appropriate
superposition. Accordingly, an additional set of elastic dis-
placements, u}(x) and u¢(x), must be imposed such that

uf (x) + uf(x) = ull (x) + u (x) 0]

Rearranging this equation and substituting equations (5, 6) for
uf(x) and u*(x) gives

(é&%—_eﬂ) R=ul(x) — ut(x) ®)

Thus, an appropriate set of mechanical loadings must act on
each layer to produce elastic displacements proportional to x*
only. It can be shown that, for a cantilever beam with a uni-
formly distributed shear force F (per unit length) applied to
either the upper or lower lateral surface and a compressive
axial load P = FL applied on the end, the axial deflection of
the centerline is (see Fig. 3)
Fx*

u(x)= AR ©)
where A is the cross-sectional area of the beam. This loading
combination and corresponding displacement suggests how to
remove the relative deflection between the film and substrate
layers. Assuming that F acts to the right on the upper surface
of the substrate and to the left on the lower surface of the
film, the elastic displacements in each layer are

Fx? Fx?
ZAfEf 24,E;

Substituting these equations back into equation (8) allows F
(and hence P) to be determined explicitly,
_ ATL (as— C{f)bEjthsts
B L(Eft;+Egt)

Figure 4 shows the layers as they now appear after subjected
to: (i) thermal loading from Step 1, (ii) mechanical forces F
and P from Step 2. The axial deformations of the centerlines

of each layer are now compatible. However, the transverse
deformations of the film and substrate layers are still not

us(x) = us(x) = — (o, 11)

F

12)
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Fig. 4 Deformation state of the film and substrate after application of
Fand P

compatible. The presence of the distributed force F results in
bending of the two layers. It can be shown that shear forces
of proper magnitude applied at the ends of each layer will
negate the transverse deflections due to F. These shear forces
are

2 2 (13, 14)

At this stage the longitudinal and transverse deflections at
all points in both layers are zero, and hence the deformations
may be considered compatible. However, the resultant forces
and moment on the ends of the strip are not zero. Thus, to
complete the solution of the problem, this fact must be ad-
dressed.

Before proceeding, the stresses in each layer will be sum-
marized. To do so a local coordinate system in each layer is
defined as in Fig. 5. Take the film layer as an example. The
origin of the y, coordinate is at x; = 0 and the x,axis coincides
with the neutral axis (the geometric center) of the film layer.
The axial force P applied at the end of the film layer results
in a tensile axial stress, while the distributed force F results in
a compressive axial stress. It should be clear that the bending
stress created by F is exactly cancelled by that created by V.
The total axial stress «/xx is calculated by taking the derivative
of the axial displacement with respect to x and multiplying the
result by E,. The axial stress in the substrate is calculated
similarly. The result of these calculations is

Fx Fx

()= = o(x)=—- =

o (X) b, v (X) bt

Shear stresses arise in the film and substrate layers due to

the application of F, V}, and V. These shearing stresses may

be obtained most easily with aid of the stress equilibrium equa-
tions

(15, 16)

9o | 30y _ oy | oy _
" 2 = ot 3 =0 @17, 18)

The shear stress in the film is obtained by inserting equations
(15, 16) in turn into equation (17), performing the necessary
differentiation and integration, and then using the condition
that the shear stress at y, = (—,/2) must equal (+F/b). The
shear stress in the substrate is calculated similarly. The result
of these calculations is

“E( ,E(l y_s)

With this construction, equation (18) is satisfied identically.
The next step involves eliminating the resultant forces and
moment on_the end of the composite strip which were intro-
duced during Step 2.

Step 3. As mentioned previously, at this stage the film and
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Fig. 6 Resultant forces and moment on composite strip

substrate layers are undeformed (but not stress-free!) when
acted upon by the thermal and mechanical loads considered
in the first two steps. Subsequent analysis requires that the
bimaterial strip be treated as a composite structure as regards
deformations and bending/shearing stress distributions. In
particular, the location of the neutral surface of the composite
strip is needed as well as expressions for the local x;, y, and
X;, ¥; coordinates of the film and substrate in terms of the
coordinates x, y. The distances #;, and A, shown on Fig. 5
locate the neutral surface of the composite strip using the
condition that

- hy - hi—t
2 2 f
E; h _tfydydz+ E, by dm ydydz=0

4 4
T2 2
(zero net axial force) 21)
The result is
Eqto(t,+2t,) + B2
hy=t—hy, hy= Epty (it 2t) + Bl 22, 23)

2(Est,+Egty)

The local coordinates x;, yr and x;, y, introduced earlier can
be expressed in terms of the coordinates x, y via the following
equations

t t
Xp=X, Yf=y-— <h1— *zf) Ixs=x, Ys=y+ <h2— j)

(24-27)

Attention may now be focused back on the resultant forces
and moments present on the end of the strip. In order to
maintain consistency with bar and beam theory, the resultant
axial force, shear force, and bending moment on the end of
the composite strip must vanish for purely thermal loading.
This requirement is consistent with a ‘‘strength of materials’’
analysis, but inconsistent with a formal elasticity solution which
would require vanishing stresses on the end cross section. An
elasticity solution would be exceedingly difficult to accomplish
in closed form. Therefore, the approximate solution afforded
by resultant theory will be accepted. The elimination of axial
force, shear force, and bending moment resultant quantities
will now be considered in turn.

Consider the axial forces on the end of the strip. The same
force P has been applied to both the film and the substrate,
the only difference being that P acts in opposite directions.
Thus, the resultant axial force is automatically zero and no
additional forces are required. However, since P was applied
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in opposite directions, there is a resultant moment on the end
cross section (see Fig. 6) equal to Pt/2 = FLt/2. In order to
enforce the zero resultant moment condition, a moment

M*=FLt/2 (28)

must be applied in the direction shown in Fig. 6. Next consider
the shear forces ¥y and V; on the end of the composite strip.
An additional shear force V* (see Fig. 6) must be applied in
order to enforce the zero resultant shear force condition. Thus,
the following condition must be enforced

Ft

Vi=—(Vi+ V)=~ >

The negative sign indicates that V* acts downward. The pres-

ence of the bending moment M* and shear force V* give rise

to additional stresses in the composite strip. The total bending

moment M7 acting on the composite due to M* and V* is
(positive MT compresses bottom fibers of the strip)

Fix
2

The bending moment MT acting on any cross-section of the
strip must equal the bending moment due to the resultant of
the stresses «f,’a and ¢, viz

29

M7= (30)

b
E M E (2 (M"Y
M=- _;)[S , Shl_,fyzdydz— f Sz S_hz ydydz
-2 -

N

(3n

where 1/p is the curvature of the neutral surface. The integrals
in the equation above represent the moments of inertia of the
film and the substrate about the neutral axis of the composite
strip. The bending moment is then,

1
M=~ =~ @yt Ede) (32)
where I, and I, are obtained using the parallel-axis theorem,

bt 1\ ?
Ifc’_' T2'£ +btf(h1— 'é[)

bt A%
Isc‘_‘ T;T +bts(h2— ‘;)

Substituting equation (30) into equation (32) yields the expres-
sion for curvature

(33, 34)

1 Fix
- = (35)
p 2(Eflfc + EsIsc)
The corresponding bending stresses are
F{Epxy FtExy
o e PY g S (36, 37)
¥ ABAd+EJ) 2(E . +Edy)

The total axial stress in the film and substrate layers is then
obtained by adding equations (36, 37) to equations (15, 16),
respectively

1 {E
oa=F. "(ﬁ - 2(Ef1fc+EsIsc>) 38
L By
o=~ F "(ms * 2(Eﬂ,c+%>) 39)

Note here that the axial stress in each layer varies linearly with
both x and y and that the stress is equal to zero at the middle
(x = 0) of the strip.

The total shear stress in the film and substrate is easily
obtained using the stress equilibrium equation, equation (17),
and imposing the conditions that oy, ) = ol (x, =hy) =
0. The result of this calculation is
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F (y—h,  bE#(K -
df __ = ( i f 1
* b ty AEd+EJl,) (40)
F h E t(h%—y*
giy:z(y‘; 2_4I;Estl( 2 y)) (41)
s ffc+EsIsc)

The expressions for the axial stress and the shear stress in each
of the layers are now complete. Only the expression for the
lateral deflection of the composite strip remains to be derived.
It is derived by integrating the expression for curvature (equa-
tion (35)) twice, and imposing the conditions that v(0) =
@0 _

dx

Fi
12(EA, + EJ.)

It should be clear that the curvature of the nonuniformly heated
strip is not constant over its length. This is in marked contrast
to the classic Timoshenko (1925) that predicts a constant cur-
vature for the uniformly heated strip.

While the present results are valid for plane stress, i.e., oy
= 0, formulas for the plane strain case may be obtained simply
by replacing E — E/(1 — »?) and « — (1 + »)ain each layer,
where » indicates Poisson’s ratio. Plane strain conditions would
be appropriate should the out-of-plane displacement (z direc-
tion) be restricted.

v(x)= 42)

Thin Film Approximation

Bi-material structures such as the one described here are
utilized frequently in the microelectronics industry in the form
of semiconductor wafers and electronic circuit chips. The dis-
tinguishing characteristic of these devices is that they consist
of a film layer which is much thinner than the substrate. They
are often referred to as ‘‘thin film’’ devices. For cases such as
this, where the thickness of the film is (for all practical pur-
poses) negligible in comparison to that of the total thickness,
the equations derived previously may be simplified. The thin
film application implies that, #, < < £, and thus, ¢ = f,. With
these approximations in mind, the equations derived previously
for the stresses and the lateral deflection may be simplified.
These thin film approximations are presented below.

Fx
O o, 43)
. _Fx &
G = o <1+ p 44
F t
%= b, ( - 5) @3)
_E[(L,2 1_ (7Y
L@ 0-0))
v(x)= fi 47
~ EpP “n
where
L
Numerical Examples

Thick-Film Problem (Mo/Al). A bimaterial strip consisting
of molybdenum on aluminum and subjected to a uniform
temperature change has recently been considered by Suhir
(1986). The present work seeks to determine the effects of a
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linear temperature gradient. The data assumed for this analysis
is: AT, = 200°C, L = 0.0254 m, b = 0.001 m, ¢ = 0.005 m.

Film-molybdenum

4;=0.0025 m
E;=70,380x 10° Pa E,=325,000% 10° Pa
a,=23.6x1076 °C! oy=4.9x 1076 °C-!

The results of the analysis are presented as a series of plots
showing the stresses, both as a function of the axial coordinate
x (Figs. 7-10), and through the thickness as a function of the
y coordinate (Figs. 11-12). The plots of stress versus x show
the analytical solution derived in this paper compared with
finite element (FE) analysis results. The FE mesh contained
300 eight node quadrilateral plane stress elasticity elements,
with a significant degree of refinement near the free end.

Figures 7 and 8 show the axial stress at the interface in both
the film and substrate as a function of distance along the length
of the bimaterial strip. The analytical and FE solutions com-
pare very well in the region away from the edge of the strip,
i.e., for values of x < (L — t). The analytical solution derived
here is not (nor was it intended to be) capable of resolving the
true behavior of the stresses in the region very close to the end
of the strip. The analytical solution for the axial stress in the
film, (Fig. 7) gives a conservative estimate of the maximum
value of that stress. Interestingly, the analytical solution for
the axial stress in the substrate underestimates the actual max-

Substrate-aluminum
t,=0.0025 m
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imum compressive stress at the interface (Fig. 8). It is unfor-
tunate that the analytical solution does not “‘bound’’ the actual
axial stresses at the interface. If this were the case, the simple
formulas could be used for design purposes. Numerical ex-
periments show that for configurations involving comparable
layer thicknesses, the strength of materials solution for the
axial stresses does not err significantly from the actual elasticity
solution as computed by FE analysis. The FE results show the
tendency for the actual axial stress to drop to zero to satisfy
the stress-free edge conditions.

Figures 9 and 10 show the interfacial shear and normal
(“‘peeling’’) stresses as a function of distance along the length
of the bimaterial strip. The shear stress is constant along much
of the interface, until just before the end of the strip. Here
the shear stress reaches its maximum value and then decays to
zero as it must to satisfy the stress-free edge condition. The
analytical solution is not capable of predicting this local edge-
effect behavior. The peeling stress is essentially zero along
much of the interface, then turns slightly tensile and then highly
compressive near the end of the strip. In fact, independent
analysis (see Bogy (1970)) indicates that this stress component
is indeed weakly singular at the free edge. Details of this char-
acteristic are beyond the scope of the present paper but are
under active current investigation by the first author.

Figures 11 and 12 show the through-thickness variation of
the shear and axial stresses at a distance x = 0.0127 m. from
the center of the strip. The shear stress is continuous across
the interface and varies quadratically through the thickness,
while the axial stress is discontinuous and varies linearly.
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The formula for the transverse deflection of the bimaterial
strip has also been verified by FE analysis.

Thin-Film Problem (Al/Si). A second numerical example
which has been investigated is a bimaterial strip consisting of
an aluminum film on a silicon substrate. The distinguishing
feature here is the fact that the aluminum layer is relatively
thin compared to the silicon substrate. The data assumed for

this analysis are: AT, = —400°C, L = 3.0in., b = 1.01in.,
= 0.25 in.
Substrate-silicon Film-aluminum
t,=0.24 in. t=0.01 in.

E,=24.6 % 10° psi E,;=10x 10° psi
a=2.5%x10"¢°C"’ a;=23.6x1076 °C~!

It is realized that the values assumed for thickness are not

representative for realistic electronic structures (e.g., wafers).

The values were chosen to avoid the necessity of using an
extremely fine mesh, as would be required for vastly different
substrate ‘and film thicknesses. The intent of this portion of
the paper is to demonstrate the validity of the-analytical so-
lutions derived in the paper, an endeavor independent of spe-
cific material properties and physical dimensions.

Figures 13 and 14 show the axial stress at the interface in

both the film and substrate as a function of distance along the'

length of the bimaterial strip. Again, the analytical and FE
solutions compare very well in the reégion away from the edge

Journal of Electronic Packaging

0 LIS ANEL A i e s s e S S
Analytical Result
a0 B .
—
‘B
&
% 2x%10% - E
(o] Finite Element Result
3x104 |- -
4x104 ST SN SN U S ST S R S SRR |
0 1 2 3

x Coordinate (in.)
Fig. 14 Axial stress %, in the substrate at the interface (Al/Si)

of the strip. The analytical solution for the axial stress in the
film (Fig. 13) gives a conservative estimate of the maximum
value of that stress. However, the analytical solution for the
axial stress in the substrate grossly underestimates the actual
maximum compressive stress at the interface (Fig. 14), in the
edge-effect zone. Therefore, for thin-film problems, the
strength of materials solution is not adequate for predicting
axial stress levels.

While not shown here, the interfacial shear stress predicted
by the analytical solution agree very closely with FE results in
the region away from the ends of the strip.

Conclusions

In conclusion, a solution has been derived which provides
an accurate estimate for the lateral deflection of a bimaterial
strip subjected to a linear, axial temperature gradient. Also,
formulas for the axial and shear stresses in the strip have been
obtained which give accurate results in the region away from
the end of the strip.
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