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High-frequency limit-cycle oscillations of an airfoil at low Reynolds number are studied
numerically. This regime is characterized by large apparent-mass effects and intermittent
shedding of leading-edge vortices. Under these conditions, leading-edge vortex shedding
has been shown to result in favorable consequences such as high lift and efficiencies in
propulsion/power extraction, thus motivating this study. The aerodynamic model used in
the aeroelastic framework is a potential-flow-based discrete-vortex method, augmented
with intermittent leading-edge vortex shedding based on a leading-edge suction para-
meter reaching a critical value. This model has been validated extensively in the regime
under consideration and is computationally cheap in comparison with Navier–Stokes
solvers. The structural model used has degrees of freedom in pitch and plunge, and allows
for large amplitudes and cubic stiffening. The aeroelastic framework developed in this
paper is employed to undertake parametric studies which evaluate the impact of different
types of nonlinearity. Structural configurations with pitch-to-plunge frequency ratios
close to unity are considered, where the flutter speeds are lowest (ideal for power
generation) and reduced frequencies are highest. The range of reduced frequencies
studied is two to three times higher than most airfoil studies, a virtually unexplored
regime. Aerodynamic nonlinearity resulting from intermittent leading-edge vortex shed-
ding always causes a supercritical Hopf bifurcation, where limit-cycle oscillations occur at
freestream velocities greater than the linear flutter speed. The variations in amplitude and
frequency of limit-cycle oscillations as functions of aerodynamic and structural para-
meters are presented through the parametric studies. The excellent accuracy/cost balance
offered by the methodology presented in this paper suggests that it could be successfully
employed to investigate optimum setups for power harvesting in the low-Reynolds-
number regime.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid–structure interaction often leads to undesirable consequences such as divergence, control reversal, and flutter (Bisplinghoff
et al., 1996; Fung, 2002), but it has also been shown to be beneficial in animal flight and swimming (Hamamoto et al., 2007; Nakata
and Liu, 2012; Taylor et al., 2010), for instance. These potential benefits have generated interest amongst the micro air vehicle (MAV)
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Nomenclature

α pitch angle
ω ¼ωh=ωα frequency ratio
βα coefficient defining cubic stiffening in pitch
βh coefficient of cubic stiffening in plunge
q¼ ½h α�T generalized coordinates
γðθÞ chordwise vorticity on airfoil
κ ¼ πρc2=4m inverse mass ratio
ω¼ 2π=T angular frequency of sinusoidal motion
ωα ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kα=Iα

p
characteristic frequency of pitch mode

ωh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kh=m

p
characteristic frequency of plunge mode

θ variable of transformation of chordwise
distance

A0;A1;A2;… Fourier coefficients
c airfoil chord
Cd drag coefficient, per unit span
Cl lift coefficient, per unit span
Cm pitching moment coefficient, per unit span
h plunge displacement
Iα airfoil moment of inertia about pivot
k¼ωc=2U reduced frequency
kα linear pitch stiffness, per unit span
kh linear plunge stiffness, per unit span

LESP leading edge suction parameter
m mass of airfoil
rα ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iα=mc2

p
airfoil radius of gyration about pivot

S measure of suction at the leading edge
Sα static moment of airfoil about pivot, per

unit span
T time period for sinusoidal motions
t physical time
tn ¼ tU=c non-dimensional time
U freestream velocity
Un ¼U=ωαc nondimensional velocity
UF linear flutter velocity
WðθÞ induced velocity normal to airfoil
xα ¼ 2Sα=mc distance of center of gravity aft of pivot,

nondimensionalized by c
xp distance of pivot aft of airfoil leading edge,

nondimensionalized by c
xCG distance of center of gravity aft of pivot non-

dimensionalized by c
DOF degrees of freedom
LCO limit-cycle oscillation
LEV leading-edge vortex
Re Reynolds number based on c and U
TEV trailing-edge vortex
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community, who aim to take inspiration from nature in designing flapping flyers in small sizes for low speeds (Liani et al., 2007; Tang
et al., 2008; Shyy et al., 2008). Aeroelastic phenomena have also been employed successfully in novel energy-harvesting methods
(Young et al., 2014; Bryant and Garcia, 2011; Dunnmon et al., 2011; Tang et al., 2009; Kinsey et al., 2011), whereby nonlinear
aeroelastic effects are exploited to extract energy from the incoming flow.

The objective of this research is to investigate nonlinear aeroelasticity in the high-reduced-frequency, low-Reynolds-
number regime. Linear aeroelastic theory, such as that developed by Theodorsen (1935) and Theodorsen and Garrick (1942),
can predict the freestream velocity above which the system becomes unstable and the airfoil oscillations grow
exponentially. The presence of nonlinearities in the system, however, affects not only the flutter speed but also the
characteristics of the system response. These nonlinearities could be either aerodynamic or structural and often result in
constant-amplitude, stable vibrations. In fact, such non-destructive limit-cycle oscillations (LCOs) are the basis of the passive
power-generation methods mentioned earlier.

Structural nonlinearities may arise owing to large deformations, material properties, or loose linkages (Lee et al., 1999a). The
effects of structural nonlinearities on airfoil aeroelasticity have been studied by several authors, focusing on different types of
nonlinear spring behavior such as bilinear or cubic variation in stiffness (see Lee et al., 1999b; Price et al., 1995). A comprehensive
review of such studies is given by Lee et al. (1999a). These studies assume that the aerodynamics are linear, that is, the flow is
incompressible, inviscid and attached to the airfoil. The onset and type of bifurcation, and amplitude and frequency of limit-cycle
oscillations were investigated. Hard springs (positive cubic stiffening) result in a supercritical Hopf bifurcation, where LCOs occur
only at freestream velocities greater than the linear flutter velocity and are independent of initial conditions. Soft springs (negative
cubic stiffening), on the other hand, result in a subcritical Hopf bifurcation where LCOs may arise at velocities below the linear
flutter velocity, depending on initial conditions. Further, chaotic oscillations are observed in a range of freestream velocities for
some configurations.

Aerodynamic nonlinearities may result from compressibility or viscous effects (Lee et al., 1999a). Limit-cycle oscillations
resulting from nonlinear aerodynamics due to compressibility effects (transonic flows) have been studied by Bendiksen
(2011). Nonlinear aerodynamics caused by viscous flow phenomena are largely dependent on the Reynolds number and the
reduced frequencies involved, and leading-edge vortices (LEVs) have been seen to play a crucial role. In helicopter and wind-
turbine applications, which are necessarily associated with large Reynolds numbers and low reduced frequencies, LEVs and
the resulting dynamic stall phenomenon might lead to violent vibrations and mechanical failure (Leishman, 2002). On the
other hand, LEVs in high-frequency flows have been credited with contributing toward the success of high-lift flight in
insects (Ellington et al., 1996; Shyy and Liu, 2007; Ellington, 1999; Dickinson and Gotz, 1993), and high propulsive (Anderson
et al., 1998) and power-extraction (Kinsey and Dumas, 2008) efficiencies.

In the dynamic-stall regime, Tang and Dowell (1993a,b) have studied flutter and forced response of a helicopter blade
using the ONERA semi-empirical aerodynamic model developed by Tran and Petot (1981). Sarkar and Bijl (2008) have
published a study on the nonlinear aeroelastic behavior of an oscillating airfoil during dynamic stall, again with the ONERA



K. Ramesh et al. / Journal of Fluids and Structures 55 (2015) 84–10586
model. In another study, Chantharasenawong (2007) investigated aeroelastic response during dynamic stall using the
Leishman–Beddoes semi-empirical aerodynamic model (Leishman and Beddoes, 1989). The limit-cycle oscillations in this
regime were observed to be dependent on initial conditions.

Although the above semi-empirical models provide for quick computations, they rely on several parameters which need
to be tuned with calibration data. Also, they can only be used in conditions that are bounded by validation with
experimental data. Further, they merely provide estimations of the force coefficients without offering any physical insight
into the aerodynamics involved. It is noted that, while there has been substantial research on aeroelasticity resulting from
unsteady aerodynamics in the regimes associated with low-reduced-frequency helicopter dynamic stall, regimes of high
reduced frequency and low Reynolds number associated with flapping wings and possibly power extraction have been
relatively unexplored.

Nonlinear aeroelasticity can be modeled very accurately by combining high-fidelity computational fluid and structural
solvers (see, for instance, Kamakoti and Shyy, 2004). Using such high-order computational methods, Poirel et al. (2011) have
studied limit-cycle oscillations caused by laminar separation bubbles at transitional Reynolds numbers, and Svacek et al.
(2007) have studied LCOs at high Reynolds numbers. Peng and Zhu (2009) have used a similar framework to assess energy
extraction from oscillating structures. These methods offer greater insight into the flow physics than semi-empirical
methods and are needed to validate low-order approaches based on approximations. They are, however, unsuitable for the
study of a large parameter space or for use in design because of time and cost considerations.

Discrete-vortex methods can be used to model airfoil aerodynamics in the time-domain, at a lower computational cost
than high-order CFD methods. Jones and Platzer (1996), for example, have analyzed airfoil flutter with a discrete-vortex
method, although assuming attached flow on the airfoil. Flow separation and vortex formation can be modeled in discrete-
vortex methods by shedding point vortices from the location of flow separation. A conventional limitation with these
methods is that they assume flow separation (usually at the leading edge) at all times and do not define conditions at which
it is initiated/terminated. Ramesh et al. (2014) have developed a discrete-vortex aerodynamic method to model unsteady
flows with intermittent LEV shedding using a leading-edge suction parameter (LESP). The unique aspect of this method is
that vortex shedding is turned on or off at the leading edge using a criticality condition. This method is, therefore, ideally
suited to modeling oscillatory airfoil flows in which intermittent LEV shedding is a key feature. In comparison with semi-
empirical methods where several parameters are typically used, this model uses only a single empirical constant, the critical
LESP, and is highly physics-based.

In this paper, the LESP-modulated discrete-vortex aerodynamic model is coupled with a two degree of freedom (2-DOF)
nonlinear structural model in a effort to study fluid–structure interaction and limit-cycle oscillations in high-frequency, low-
Reynolds-number, vortex-dominated flows. The aerodynamic and structural models employed are detailed in Section 2. In Section 3,
these models are validated, in the regimes under consideration, against data from the literature. In Section 4, the characteristics of
LCOs in vortex-dominated flows as a function of relevant structural and aerodynamic parameters are presented.

2. Aeroelastic modeling

A nonlinear aeroelastic model for a two-degree-of-freedom airfoil is presented in this section. The structural equations
are geometrically nonlinear, accounting for large-amplitude motions, and cubic nonlinearities in the stiffness terms. For the
aerodynamics, a discrete-vortex method with intermittent vortex shedding is employed. The resulting model, therefore,
caters for nonlinearities in both structure and aerodynamics.

2.1. Structural model: geometrically nonlinear formulation of the two-degree-of-freedom airfoil

The two-degree-of-freedom system subject to study is depicted in Figs. 1 and 2. Fig. 1 shows a rigid airfoil, elastically
supported by translational and rotational springs in plunge, h, and pitch, α. The corresponding generalized forces are lift, L,
and pitching moment, M, respectively. The geometric parameters of the airfoil are illustrated in Fig. 2. The pivot represents
the point at which the springs are attached (often referred to as elastic axis as per 3D flexible-wing terminology), and the
coordinate system employed for the derivation of the structural equations is fixed at this point in the undeformed
configuration.
Fig. 1. Airfoil degrees of freedom and lift and pitching moment acting on it.



Fig. 2. Locations of pivot and C.G. on the airfoil.
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From Fig. 1, the horizontal (ζx) and vertical (ζz) displacements of a point Q on the airfoil chordline, at a distance x from
the pivot at its location in the undeformed configuration, are given by

ζx ¼ xð1� cosαÞ;
ζz ¼ h�x sinα: ð1Þ

If the mass per unit length at a point x of the chordline is ρsðxÞ, then the kinetic, T, and potential, U, energies associated
with the airfoil are obtained as

T ¼ 1
2

Z
c
ρs

_ζ
2
x þ _ζ

2
z

� �
dx

¼ 1
2
m _h

2�Sα cosα _h _αþ1
2
Iα _α2;

U ¼
Z h

0
Fh dhþ

Z α

0
Fα dα; ð2Þ

where ð _�Þ indicates differentiation with respect to time, m is the total mass of the airfoil, and Sα and Iα are its static and
inertia moments about the pivot; Fh ¼ FhðhÞ and Fα ¼ FαðαÞ are the restoring forces in plunge and pitch, respectively, and can
include any spring nonlinearity such as cubic hardening/softening, bilinearity or hysteresis (Lee et al., 1999a).

The kinetic and potential energies of the system, Eq. (2), must satisfy Lagrange's equations, which, neglecting structural
damping read as

d
dt

∂T
∂ _q

� �
�∂T
∂q

þ∂U
∂q

¼Q ; ð3Þ

where the generalized coordinates and forces are, respectively, q¼ ½h α�T and Q ¼ ½L M�T .
Applying Eq. (3) to the airfoil, the equations of motion are obtained as

m €h�Sα €α cosαþSα _α2 sinαþFh ¼ L;

�Sα cosα €hþ Iα €αþFα ¼M; ð4Þ
where the trigonometric functions account for geometric nonlinearities in the kinematics and arise from the definition of
(nonlinear) airfoil displacements given in Eq. (1). In this work, only cubic springs are considered, and the forces Fh(h) and
FαðαÞ, therefore, adopt the form of

FhðhÞ ¼ khf hðhÞ ¼ kh hþβhh
3

� �
;

FαðαÞ ¼ kαf αðαÞ ¼ kα αþβαα
3� �
; ð5Þ

where kh and kα are the classical linear spring constants, and βh and βα are constant coefficients for cubic stiffening with
appropriate dimensions (Lee et al., 1999a).

By multiplying Eq. (4) by 2=ðmcÞ and 4= mc2
� �

, respectively, and assuming the cubic restoring loads given by Eq. (5), the
nondimensional form of the equations of motion is obtained as

2
c
€h�xα €α cosαþxα _α2 sinαþ2

c
ω2

hf h ¼
4
π
κ
U2

c2
Cl;

�2
c
xα cosα €hþr2α €αþ rαωαð Þ2f α ¼

8
π
κ
U2

c2
Cm; ð6Þ

where the standard aeroelastic terminology has been used (see Nomenclature): xα is the nondimensional static unbalance;
rα is the airfoil's radius of gyration referred to the pivot; κ is the airfoil's inverse mass ratio; ωh and ωα are the natural
frequencies of the uncoupled plunging and pitching modes; and Cl and Cm are the lift and pitching moment coefficients.

The airfoil equations of motion are geometrically nonlinear, in both the kinematics and stiffness terms, capturing large-
amplitude effects. It is worth mentioning that the kinematic nonlinearity has been frequently neglected in the literature
when considering nonlinear stiffness terms (see, for instance, Lee et al., 1999a); conversely, the spring nonlinearity is often
neglected in geometrically nonlinear descriptions of the kinematics (e.g., Svacek et al., 2007). Note also that the linear
(classical) version of the airfoil equations of motion (Theodorsen, 1935) can be recovered by considering linear springs and
assuming ζx � 0 and ζz � h�xα in the airfoil-displacement definition, Eq. (1).



Fig. 3. Depiction of time-stepping scheme.

Fig. 4. Airfoil velocities and pivot location.
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2.2. Aerodynamic model: discrete-vortex model with intermittent LEV shedding

The aerodynamic model used in the current work is a recently developed discrete vortex method with a novel shedding
criterion that modulates intermittent vortex shedding from the leading edge. The shedding criterion, governed by a
maximum allowable leading-edge suction, is based on the critical value of a leading-edge suction parameter (LESP). This
section briefly describes the main elements of the LESP-modulated discrete-vortex method (LDVM). The interested reader
may refer to Ramesh et al. (2013, 2014) for further details.

2.2.1. Large-angle unsteady thin-airfoil theory
At the foundation of the LDVM is a large-angle unsteady thin-airfoil theory detailed in Ramesh et al. (2013). This theory is

based on the time-stepping formulation given by Katz and Plotkin (2000), but eliminates the traditional small-angle
assumptions in thin-airfoil theory which may be invalid in flows of current interest. At each time step, a discrete vortex is
shed from the airfoil trailing edge (referred to as TEV) as depicted in Fig. 3. When dictated by the LESP-based shedding
criterion (Section 2.2.2), a discrete vortex is also shed from the leading edge at some time steps. The vorticity distribution
over the airfoil at any given time step is taken to be a Fourier series truncated to r terms:

γ θ
� �¼ 2U A0

1þ cosθ
sinθ

þ
Xr

i ¼ 1

Ai sin iθ
� �" #

; ð7Þ

where the transformation variable θ relates to the chordwise coordinate as: x¼ cð1� cosθÞ=2, with x measured from the
leading edge; that is, 0rxrc and 0rθrπ. A0, A1, …, Ar are the time-dependent Fourier coefficients, and U is the
freestream velocity. The Kutta condition (zero vorticity at the trailing-edge) is enforced implicitly through the form of the
Fourier series. The Fourier coefficients are calculated by enforcing the boundary condition of zero normal flow through the
airfoil camberline as

A0 ¼ �1
π

Z π

0

WðθÞ
U

dθ; ð8Þ

Ai ¼
2
π

Z π

0

WðθÞ
U

cos iθ
� �

dθ; ð9Þ

where WðθÞ is the induced velocity normal to the airfoil camberline. This value is calculated from components of motion
kinematics, depicted in Fig. 4, and induced velocities from all vortices in the flowfield.

When there is no LEV shedding in a time step, the only unknown is the strength of the last-shed trailing-edge vortex and
this is calculated iteratively such that Kelvin's circulation condition is satisfied (Ramesh et al., 2013). If a TEV and LEV are
both shed in a time step, their strengths are determined as discussed in Section 2.2.2.
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2.2.2. LESP criterion for LEV formation and shedding
The LESP is a measure of the suction peak at the leading edge, which in turn is caused by the stagnation point moving

away from the leading edge when the airfoil is at an angle of attack. From Garrick (1937) and von Karman and Burgers
(1935), the suction at the leading edge in potential flow may be expressed as

S¼ lim
x-LE

1
2
γ xð Þ ffiffiffi

x
p

: ð10Þ

Evaluating using the current formulation, S¼ ffiffiffi
c

p
UA0. The leading edge suction parameter is defined as a nondimensional

value of suction at the leading edge, and is hence simply set equal to the first coefficient from Eq. (7), A0.
As noted by Katz (1981), real airfoils have rounded leading edges which can support some suction even when the

stagnation point is away from the airfoil leading edge. The amount of suction that can be supported is a characteristic of the
airfoil shape and Reynolds number of operation. When these quantities are constant, it was shown in Ramesh et al. (2014)
that initiation of LEV formation always occurred at the same value of LESP regardless of motion kinematics and history. This
threshold value of LESP, which is a function of the airfoil shape and Reynolds number, is termed the critical LESP. This value,
for any given airfoil and Reynolds number (and other specific operating conditions such as freestream turbulence and the
presence of roughness), can be obtained from CFD or experimental predictions for a single motion (Ramesh et al., 2014), and
can then be used for any other motion to predict LEV formation. In the LDVM model, a discrete vortex is shed is from the
leading edge at those time steps when the instantaneous LESP (A0 value) is greater than the critical LESP value. The strength
of the LEV is determined such that the instantaneous LESP value, which would have otherwise exceeded the critical LESP
value, is made equal to the latter. This condition, along with Kelvin's condition, is used to determine shed vortex strengths
iteratively in time steps where both TEV and LEV are shed.

2.2.3. Vortex method details
In the current approach, the vortex-core model proposed by Vatistas et al. (1991), which gives an excellent

approximation to the Lamb–Oseen vortex, is used to represent the discrete vortices as vortex blobs. Using this core model
with order two, the velocities induced at X and Z (u and w) by the kth vortex in the X and Z directions are

u;w½ � ¼ γk
2π

Z�Zkð Þ; Xk�Xð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�Xkð Þ2þ Z�Zkð Þ2

h i2
þv4core

r : ð11Þ

A nondimensional time stepΔtn ¼ΔtU=c¼ 0:015 is used for all simulations presented in this paper. Hald (1979) has proved that
the vortex-blob method is convergent (stable when run over long periods) so long as the vortex-core radius is larger than the
average spacing between vortices. The average spacing between the vortices, d, is calculated as d¼ cΔtn. The vortex core radius is
taken to be approximately 1.3 times the average spacing between the vortices (as suggested by Leonard, 1980): vcore ¼ 0:02c.
Convergence studies have been performed during the development of this method, and the numerical parameters have been
selected such that the simulation results are not improved by either increasing or decreasing their values.

To control vortex count, and thus limit the computational cost, vortices which are a distance greater than ten chord
lengths from the airfoil are deleted. When vortices are deleted from the domain, Kelvin's circulation condition which is used
to iterate for shed vortex strengths is updated accordingly. Test simulations showed that results did not change when the
cutoff distance was increased beyond ten chord lengths, implying that the velocity induced by vortices at a distance greater
than ten chord lengths is negligible in comparison with other velocities acting on the airfoil.

At each time-step, all the free vortices in the flowfield are convected by the net local velocity induced at their centers.
A first-order time-stepping procedure is used for updating vortex positions, since no significant change in accuracy was
observed by using higher-order methods.

2.2.4. Forces and moment on airfoil
The forces and moment on the airfoil are derived in detail in Ramesh et al. (2014) and are outlined briefly here. The two

forces on the airfoil are the normal force and leading-edge suction force, given by

FN ¼ ρπcU U cosαþ _h sinα
� �

A0þ
1
2
A1

� �
þc

3
4
_A0 þ

1
4
_A1 þ

1
8
_A2

� �	 


þρ
Z c

0

∂ϕlev

∂x

� �
þ ∂ϕtev

∂x

� �� �
γ xð Þ dx; ð12Þ

FS ¼ ρπcU2ðA0Þ2: ð13Þ
The moment about an arbitrary reference point, xref, is given by

M¼ xref FN�ρπc2U U cosαþ _h sinα
� � 1

4
A0þ

1
4
A1�

1
8
A2

� �	
þc

7
16

_A0 þ
11
64

_A1 þ
1
16

_A2 �
1
64

_A3

� �


�ρ
Z c

0

∂ϕlev

∂x

� �
þ ∂ϕlev

∂x

� �� �
γ xð Þx dx: ð14Þ
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The force coefficients (CN and CS) are evaluated by dividing the forces by 1
2ρU

2c and the moment coefficient (Cm) is
obtained as M=12ρU

2c2. The lift and drag coefficients (Cl and Cd) are calculated using components of normal and leading-edge
suction forces. The time derivatives of the Fourier coefficients in the forces and pitching moment (Eqs. (12)–(14)) arise from
the apparent-mass contribution which is very significant for high-reduced-frequency motion.

2.2.5. Limitations of the aerodynamics model
As shown in Ramesh et al. (2014), the predictions from the current LDVM are in reasonable, and sometimes excellent,

agreement with those from CFD and experiments. Because the LDVM does not model thick or separated boundary layers,
the method is restricted to motions where the LEV formation occurs without being accompanied by significant trailing-edge
separation or stall. For most rounded-leading-edge airfoils, the LDVM is most reliable for high-reduced-frequency motions,
with k40:4. In the current work, all LCOs studied in Section 4 have k40:6.

Another disadvantage, which is characteristic of vortex methods, is the exponential increase in computational time with
number of vortices in the flow field (Oðn2Þ). Fast summation methods (Carrier et al., 1988), amalgamation of vortices, or
deletion of vortices that exit the field of interest could be used to control the vortex count. As mentioned previously, vortices
that are at a distance greater than ten chord lengths from the airfoil are deleted in the current implementation.

2.3. Aero-structural coupling

The coupling between the structural and aerodynamic models is described next. The structural model is governed by
second-order ordinary differential equations in continuous time, whereas the aerodynamic model is naturally written in
discrete time. In order to couple both models, the structural equations are integrated in time using a three-step Adam–

Bashforth scheme (Butcher, 2008), whereby the generalized coordinates and their derivatives (pitch, plunge and
corresponding rates) are marched as

q
_q

( )nþ1

¼
q
_q

( )n

þΔt
12

23
_q
€q

( )n

�16
_q
€q

( )n�1

þ5
_q
€q

( )n�2
2
4

3
5; ð15Þ

with n being the time step at which states are evaluated. This is an explicit time-marching scheme in which only
information from previous time steps is required.

The aero-structural integration is based on a loosely coupled approach in which information is exchanged at each time
step, but no subiterations are included. This scheme has been chosen due to the first-order, explicit nature of the
aerodynamic model, and because it has shown excellent convergence properties for the appropriate selection of simulation
parameters. The main steps of the process are briefly summarized below:
1.
 Based on the geometry and velocities at time step n, the aerodynamic loads are computed from the discrete-vortex
method with the corresponding vorticity distribution, including leading-edge vortices when applicable.
2.
 These aerodynamic loads at time step n are applied to the structural equations, Eq. (6), which are solved to yield the
acceleration values €h

n
and €αn.
3.
 From the Adam–Bashforth integration scheme, Eq. (15), the structural states (plunge, pitch and corresponding rates) at
time step nþ1 are determined.
4.
 The procedure is repeated from step 1.

The aeroelastic coupling and integrations are also depicted in a flowchart in Fig. 5, with a detailed description of how the
discrete-vortex method operates.

3. Validation against previous work

Validation of the current method with linear aerodynamics is presented for aeroelastic predictions: using linear structures in
Section 3.1 and using nonlinear structures in Section 3.2. Because there is almost no suitable data in the literature for passive
airfoil aeroelasticity in high-frequency, LEV-dominated flows, validation of the nonlinear aerodynamics is presented for
prescribed kinematics in Section 3.3.

3.1. Validation for linear aerodynamics and linear structures: onset of linear flutter for the classical 2-DOF airfoil

The classical two-degree-of-freedom linear flutter problem is used to validate the aeroelastic model developed in this
work. The LEV shedding in the aerodynamic model is “turned off” by setting the critical LESP to a very high value of 5.0. The
aerodynamic model thus provides a potential-flow solution with attached flow at the leading edge, enabling validation of
the method with linear-flutter-onset data. Since the current method is based in the time domain, flutter velocities are
identified as those above which divergent oscillations occur.

As an illustration of how the oscillation characteristics vary with velocity, Fig. 6 shows the variations of α with tn at three
nondimensional velocity values (Un ¼U=ωαc) for an example configuration. It is seen that the oscillatory behavior changes



Fig. 5. Flowchart summarizing aero-structural integration.
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Fig. 6. Variation of oscillatory behavior with velocity for an example configuration (xp¼0.35, κ¼ 0:05, rα ¼ 0:5, xα ¼ 0:2 and ω ¼ 1:0). Left to right:
Un ¼ 0:62, Un ¼ 0:64, and Un ¼ 0:66. Constant amplitude for the center case corresponds to the linear flutter velocity of Un

F ¼ 0:64 for this example.

Fig. 7. Flutter-onset velocities from current method compared against data published by Murua et al. (2010). Structural parameters: xp¼0.35, κ¼ 0:05,
rα ¼ 0:5. The gray circle contains the data point which is determined through the illustration in Fig. 6.
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from convergent for the smallest velocity value, to constant amplitude at the intermediate value, to divergent at the highest
value. Thus, it is possible to determine the nondimensional flutter velocity (Un

F ¼UF=ωαc) using the current approach as that
value at which the oscillation amplitude remains invariant with time.

In Fig. 7, flutter-onset velocities for a range of frequency ratios (ω ¼ωh=ωα) and static unbalance values (xα) are compared
against data published by Murua et al. (2010). It is seen that the comparison between the two methods is excellent, thus validating
the current approach for cases with linear aerodynamics and linear structures. Small deviations may be attributed to departures in
the current aerodynamic model from Theodorsen's theory: modeling of wake roll-up in the current model instead of a flat wake
used in classical theory and removal of the small-angle approximations typically made in classical theory.
3.2. Validation for linear aerodynamics and nonlinear structures: onset of flutter for soft springs and LCO amplitudes for hard
springs

Structural nonlinearities due to nonlinear stiffness can be modeled in the current work as described in Eq. (5). Aeroelastic
behaviors resulting from the coupling of such structural nonlinearity, by use of different cubic stiffnesses, with linear
aerodynamic models are documented in Lee et al. (1999b). Specifically, two types of cubic nonlinearities were considered for
the pitch spring: a soft spring for which βα is negative and a hard spring for which βα is positive. Results from that paper are
used to validate the current aero-structural model. As was done in the earlier subsection, LEV shedding is “turned off” to
simulate linear aerodynamics resulting from attached leading-edge flows.

As shown in Lee et al. (1999b), when a soft pitch spring is used, divergent oscillations can occur even at velocities below
the linear flutter velocity, UF, provided a sufficiently large initial pitch amplitude is used. Fig. 8 shows the oscillatory
behavior for an initial pitch angle of αð0Þ ¼ 51 predicted by the current method for an example configuration with a soft
pitch spring for three values of Un=Un

F below unity. It can be seen that the oscillatory behavior changes from convergent to
constant-amplitude to divergent. Fig. 9 compares the prediction of Un=Un

F for flutter onset as a function of the initial pitch
angle, αð0Þ, for the same soft-spring configuration with results published in Lee et al. (1999b). The comparison is seen to be
excellent.

Lee et al. (1999b) also show that, with a hard spring, the oscillations are always convergent for velocities that are less
than the linear flutter speed, that is, for Un=Un

Fo1:0. For Un=Un

F41:0, the nonlinear spring stiffness results in the formation
of LCOs rather than the divergent oscillations that would have occurred with a linear spring. The amplitude of the resulting
LCO, αA, is independent of the initial conditions in pitch and plunge, but increases with increasing Un=Un

F . The behavior is
illustrated for an example configuration with a hard pitch spring for three values of Un=Un

F in Fig. 10. Comparison of the
predicted variation of LCO amplitude with Un=Un

F from the current method with the results of Lee et al. (1999b), shown in
Fig. 11, is seen to be excellent. The small deviations from the results of Lee et al. (1999b) (which uses linear aerodynamics),
which are noticeable in the larger-amplitude oscillations, may be attributed to the removal of small-angle approximations
and the use of wake rollup in the current aerodynamic model.



Fig. 9. Flutter-onset conditions for a soft pitch spring from current method compared against data published by Lee et al. (1999b). Structural parameters:
xp¼0.25, κ¼ 0:01, rα ¼ 0:5, xα ¼ 0:25, ω ¼ 0:2, βα ¼ �3. The gray circle contains the data point which is determined through the illustration in Fig. 8.

Fig. 10. Behavior of LCO for three values of Un=Un

F for an example configuration having a hard pitch spring. Structural parameters are xp¼0.25, κ¼ 0:01,
rα ¼ 0:5, xα ¼ 0:25, ω ¼ 0:2, βα ¼ 3, Un

F ¼ 3:15. Left to right: Un=Un

F ¼ 1:006, Un=Un

F ¼ 1:029, and Un=Un

F ¼ 1:048.

Fig. 8. Variation of oscillatory behavior with velocity for an example configuration having a soft pitch spring with initial pitch amplitude of αð0Þ ¼ 51.
Structural parameters are xp¼0.25, κ¼ 0:01, rα ¼ 0:5, xα ¼ 0:25, ω ¼ 0:2, βα ¼ �3, Un

F ¼ 3:15. Left to right: Un=Un

F ¼ 0:9905, Un=Un

F ¼ 0:9920, and
Un=Un

F ¼ 0:9936. For αð0Þ ¼ 51, it is seen that the response is divergent for Un40:9920Un

F .

Fig. 11. Variation of LCO amplitude with Un=Un

F for a hard pitch spring from current method compared against data published by Lee et al. (1999b).
Structural parameters: xp¼0.25, κ¼ 0:01, rα ¼ 0:5, xα ¼ 0:25, ω ¼ 0:2, βα ¼ 3. The gray circles contain the data points which are determined through the
illustration in Fig. 10.

K. Ramesh et al. / Journal of Fluids and Structures 55 (2015) 84–105 93
3.3. Validation of nonlinear aerodynamic model for prescribed kinematics: force coefficients for vortex-dominated flows, typical
of power-extraction regimes

The LDVM aerodynamic method has been validated against CFD and experiment in Ramesh et al. (2014) for several
airfoils undergoing prescribed unsteady motions at low Reynolds numbers. In this paper, one of these validation cases from
Ramesh et al. (2014) is adapted and briefly presented for completeness. In this example, a prescribed sinusoidal pitch-
plunge motion of a NACA 0015 airfoil at a Reynolds number of 1100 and high reduced frequency (suitable for this model) of
k¼0.439 is used to validate the LDVM aerodynamic model for a case with intermittent LEV shedding. Force coefficients and
flow-field predictions from the current aerodynamic model are compared against those presented by Kinsey and Dumas
(2008), who used laminar runs of the FLUENT CFD code (FLUENT, 2003) to study oscillating motions for power extraction
from a moving fluid. As discussed in greater detail in Ramesh et al. (2014), the critical-LESP value for this case (NACA 0015



Fig. 12. Variation with t=T of: (a) LESP from current model, (b) lift coefficient from LDVM and CFD, (c) drag coefficient from LDVM and CFD, (d) pitching
moment coefficient about one-third chord from LDVM and CFD. The CFD solutions are from Kinsey and Dumas (2008). In all plots, the initiation and
termination of LEV shedding is marked on the LDVM curves using open and filled triangle symbols, respectively, with upward/downward-pointing
triangles indicating upper/lower-surface LEV shedding.
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airfoil at a Reynolds number of 1100) was obtained from CFD to be 0.19. The pitch–plunge kinematics are defined as

h
c
tð Þ ¼ cos 0:28πtð Þ; ð16Þ

αo tð Þ ¼ 76:33o cos 0:28πtþπ
2

� �
: ð17Þ

Fig. 12 compares steady-state force and pitching-moment predictions from LDVM (at the 5th cycle) with the CFD results
of Kinsey and Dumas (2008) for one period (T) of the prescribed motion. In all four subplots, the pitch angle variation, αðt=TÞ
is plotted in gray with the scale shown on the right side. Fig. 12(a) shows the time variation of LESP for the motion, with the
positive and negative values of the critical LESP of 0.19 marked as dashed lines. It is seen that the LESP starts to decrease at
the start of the cycle, reaching and staying at the negative critical value for approximately a quarter of the cycle. With
increasing pitch angle, the LESP increases and reaches the positive critical value in the second half of the cycle, staying at
that value again for approximately a quarter of the cycle. During the time when the LESP is at the positive/negative critical
value, clockwise/counter-clockwise discrete vortices are generated, which form an LEV that is shed from the upper/lower
surface. Fig. 12(b)–(d) compares the variations of lift, drag, and moment coefficients from the LDVM and CFD predictions.
The comparison in lift is seen to be very good, with the low-order method capturing all of the trends that are seen in the CFD
prediction. The comparison in drag is excellent. Pitching-moment prediction from the low-order method is seen to have
some discrepancies compared to the CFD result, but the general behavior is similar between the two methods. The
discrepancies in pitching-moment prediction are attributed to the formation of thick or separated boundary layers on the
airfoil surfaces, not modeled in the LDVM theory (Ramesh et al., 2014).

The flow prediction from LDVM is compared with the CFD vorticity plot provided in Kinsey and Dumas (2008) for t=T ¼ 1
(at which h=c¼ 1 and α¼ 0) in Fig. 13. Concentrations of vorticity are seen at the same locations with respect to the airfoil in
both predictions.



Fig. 13. Vorticity plot from CFD (Kinsey and Dumas, 2008, reproduced with permission) for t=T ¼ 1:0 compared with flowfield from LDVM for t=T ¼ 1:0.

Fig. 14. Reduced-frequency variation with xα and ω at the flutter velocity, derived from data published by Murua et al. (2010). Structural parameters:
xp¼0.35, κ¼ 0:05, rα ¼ 0:5.
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This validation, along with others presented in Ramesh et al. (2014), demonstrates that the LDVM approach is ideally
suited for use as the aerodynamic model in the current work. It is successful in predicting the aerodynamic loads to
sufficient accuracy even in the presence of intermittent LEV shedding. Of importance to the current work is that the LDVM is
also computationally fast, with run times being typically less than 1 min for 1 cycle compared to several hours for a high-
order CFD method.

4. Study of high-frequency LCOs in low-Reynolds-number flows

The characteristics of limit-cycle oscillations in low-Reynolds-number, high-reduced-frequency flows are studied using
the numerical model described in Section 2. From Eq. (6), the structural parameters which influence aeroelastic behavior are
static unbalance (xα), radius of gyration (rα), inverse mass ratio (κ), frequency ratio (ω ¼ωh=ωα) and the cubic stiffening
constants (βh and βα). The aerodynamic parameters are the freestream velocity (U) and the critical LESP used in the discrete-
vortex method; the critical-LESP value is a function of airfoil shape and Reynolds number.

4.1. Selection of parameter space

The parameter space in this study is confined to combinations of structural and aerodynamic parameters which result in
high-frequency LCOs. Typical values from the literature are used for the radius of gyration, rα ¼ 0:5; inverse-mass ratio,
κ ¼ 0:05; and pivot, xp¼0.35. To determine the range of static unbalance (xα) and frequency ratio (ω) that result in high-
frequency LCOs, linear flutter velocity data and the values of oscillation frequencies at these speeds from Murua et al. (2010)
are used. Reduced frequency, k¼ωc=ð2UÞ, of the neutrally stable response at flutter velocity is calculated from this data over
a range of xα andω, and is plotted in Fig. 14. It is seen that frequency ratios between 1 and 1.3, and static unbalance values of
0.05, 0.1 and 0.2, result in high reduced frequencies well above the desired lower limit of k¼0.6 as discussed in Section 2.2.5
and shown by the gray line in Fig. 14. Hence this space in xα and ω is chosen for this study. Although the reduced
frequencies for LCOs above the flutter velocity would be different from the oscillation frequencies at UF, the latter provide a
useful guide to identify the parameter space of interest. It is noted that these values of xα and ω would also be of interest for
power extraction because of the low flutter speeds (cut-in speeds). The Reynolds number for the study is chosen to be 1000.
The LESPcrit for a fixed Reynolds number depends on the airfoil's leading-edge radius, and may vary from zero (perfectly
sharp leading edge) to an upper limit of 0.3. Higher values of LESPcrit are unrealistic to consider since trailing-edge
separation/“bluff body”-type flow would result if the airfoil's leading edge were excessively rounded.

The parameter space outlined above is employed in the remainder of Section 4. In Section 4.2, a baseline case is defined
and the LCO properties for this case are studied in detail. In Sections 4.3–4.6, the variations in LCO properties with
deviations in parameters from the baseline case are analyzed.



Table 1
Base parameter set used to study LCO characteristics in high-frequency, low-Reynolds-number flows.

Parameter Symbol Value

Static unbalance xα 0.05
Radius of gyration rα 0.5
Inverse mass ratio κ 0.05
Frequency ratio ω ¼ωh=ωα 1.0
Cubic stiffening – pitch βα 0.0
Cubic stiffening – plunge βh 0.0
Flutter velocity Un

F 0.359
Freestream velocity Un 1:3Un

F ¼ 0:4667
Critical LESP LESPcrit 0.11
Initial conditions – pitch αð0Þ, _αð0Þ αð0Þ ¼ 10○ , _αð0Þ ¼ 0
Initial conditions – plunge hð0Þ, _hð0Þ hð0Þ ¼ _hð0Þ ¼ 0
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4.2. Baseline case for the four-part parametric study

The base parameter set for this research is derived from the considerations detailed above and is listed in Table 1. Values
of xα ¼ 0:05 and ω ¼ 1:0 are used, for which the linear flutter velocity from Murua et al. (2010) is Un

F ¼ 0:359. The baseline
freestream velocity is taken to be 1.3 times the linear flutter velocity. A 2.3%-thick flat-plate airfoil with a semi-circular
leading edge is considered, and the critical LESP value for this airfoil at Re¼1000 is 0.11 as calibrated from CFD in Ramesh
et al. (2014). The springs are assumed to have linear stiffness in the baseline configuration. The effect of cubic stiffening is
analyzed in Section 4.4.

The airfoil's aeroelastic response for the base parameter set listed in Table 1 is shown in Fig. 15. The pitch and plunge
amplitudes increase from their initial values and reach a limiting value as shown in the insets of Fig. 15(a) and (b). The
variations of pitch and plunge with time (nondimensional), after limit-cycle oscillations are reached, are plotted in Fig. 15(a)
and (b). It is apparent and is further established below, that the response is single-period. A single time period of the airfoil's
response is enclosed by dashed lines. Fig. 15(c) shows the variation of LESP with tn. This parameter controls leading-edge
vortex formation in the discrete-vortex model. From the figure, it is seen that during one period, the LESP value reaches the
positive and negative critical LESP values once in each cycle. This behavior corresponds to one LEV being formed on the
airfoil's upper surface followed by another on the lower surface in one period. The time instants at which the LESP values
overlap with the critical LESP value in the figure mark the instants at which discrete vortices are released from the leading
edge in the discrete-vortex model. The lift, drag and pitching moment coefficients calculated from the aerodynamic model
are shown in Fig. 15(d)–(f). Fig. 15(g) and (h) is phase-plane and power spectral density (PSD) plots of the response,
respectively. The horizontal axis of the PSD plot is reduced frequency (k). The phase-plane and PSD plots further affirm that
the limit-cycle oscillation is single period. The PSD plot shows the response reduced frequency to be approximately 1.08.
Thus the airfoil oscillation ensuing from the chosen parameters is of high reduced frequency, where the flow is expected to
be dominated by leading-edge vortices and apparent-mass forces, and the aerodynamic model is expected to represent the
flow physics well.

The steady-state and harmonic limit-cycle oscillations in pitch and plunge may be represented as

α¼ αA cos ð2ktnÞ; ð18Þ

h
c
¼ hA

c
cos 2ktnþϕ

� �
; ð19Þ

where αA and hA are the amplitudes of pitch and plunge, k is the reduced frequency of oscillation, and ϕ is the phase angle
between pitch and plunge (with pitch leading plunge). For the LCO illustrated in Fig. 15, αA ¼ 16:6○, hA ¼ 0:128c, k¼1.08 and
ϕ¼ 49:1○.

Fig. 16(a)–(d) depicts the flow topology during one period of the LCO. As noted earlier, one LEV is shed over the airfoil
upper surface, followed by another from the lower surface during one cycle. In (b) and (d) discrete-vortex shedding from the
leading edge is observed on the upper and lower surfaces, respectively. In (a) and (c) the LEVs are seen convecting over the
airfoil chord, on the lower and upper surfaces, respectively. Fig. 16(e) depicts the wake topology ensuing from the limit-cycle
oscillation.

It is emphasized here that limit-cycle behavior in the baseline case described above is solely owing to the aerodynamic
nonlinearity (LEV shedding). To demonstrate this point, Fig. 17(a) and (b) shows the pitch variation for the baseline case with
and without the LEV shedding turned on in the aerodynamic model. It is clear that when the aerodynamic nonlinearity is
not present, no LCOs are seen and divergent flutter results as there are no nonlinearities in the structural model. Fig. 17(c)
and (d) shows the variation in LESP for these two cases. When LEV shedding is enabled in the model, the LESP is bounded by
LESPcrit, thereby resulting in limit-cycle response where the pitch/plunge variation is bounded as well.



Fig. 15. Baseline case: limit-cycle response for the parameters listed in Table 1. Time variation of (a) pitch angle, (b) plunge per unit chord, (c) LESP, (d) lift
coefficient, (e) drag coefficient, (f) pitching moment coefficient. The dashed lines enclose one period of the LCO. (g) and (h) are phase-plane and PSD plots,
respectively. Insets in (a) and (b) show long-time responses for pitch angle and plunge per unit chord.
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4.3. Parametric study A: effect of change in freestream velocity

The effect of freestreamvelocity on LCO characteristics is first illustrated by considering three representative values of Un=Un

F .
Subsequently, the LCO behavior is presented for a wide range of Un=Un

F to show the resulting bifurcation characteristics. It is
recalled that, in this study, Un

F ¼ 0:359 is the linear flutter velocity from Murua et al. (2010).
The LCO behaviors for the three velocities are presented in Fig. 18 by plotting in three columns the oscillations at three values

of Un=Un

F of 1.3, 1.8, and 2.3, from left to right. The top row shows the oscillations of α for a representative time window of
335rtnr385. Also marked, using circle symbols, on the right side of each subplot of the top row are the α values



Fig. 16. Baseline case: flow topology plots for the limit-cycle response obtained using the parameters listed in Table 1. Plots (a)–(d) depict vorticity
distributions at four equally spaced time intervals over one period of the oscillation. Plot (e) shows the wake structure resulting from the LCO: (a) tn=Tn ¼ 0;
(b) tn=Tn ¼ 0:25; (c) tn=Tn ¼ 0:5; (d) tn=Tn ¼ 0:75; and (e) wake structure.
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Fig. 17. Illustration of aerodynamic nonlinearity, caused by LEV shedding, as the reason for LCO formation instead of divergent oscillations in the baseline
case. (a) Pitch response with LEV shedding, (b) pitch response without LEV shedding, (c) LESP variation with LEV shedding, and (d) LESP variation without
LEV shedding.
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corresponding to all the positive and negative peak values in the α–tn variation. These peak values are identified by determining
the time instants at which dα=dtn ¼ 0. For the first two Un=Un

F values of 1.3 and 1.8, it is seen that the α–tn variations are single-
period oscillations. For each of these two cases, all points for the positive peaks have the same value of α, resulting in all the
symbols on the right side of the plot coinciding with each other. The same behavior is true for the negative peaks as well. Going
from Un=Un

F of 1.3 to 1.8, it is seen that the amplitude of α oscillations increases, while the frequency decreases. The behavior for
the highest velocity, Un=Un

F ¼ 2:3, is seen to be different from those for the first two velocities. The oscillations for this case are
seen to have multiple amplitudes. As a result, the symbols for the α values for the positive and negative peaks on the right side
of the subplot do not coincide, but have a spread over an α range.

The second and third rows of Fig. 18 present the phase-plane plots and the power spectral densities (PSDs), respectively,
derived from large time intervals of the responses. For Un=Un

F of 1.3 and 1.8, the plots in these two rows confirm the
observations made from the corresponding α–tn plots: the response is single-period and with increasing Un=Un

F , the
oscillation amplitude increases and the frequency of oscillation decreases. For Un=Un

F of 2.3, the phase-plane plot is not a
pure ellipse because of the LCO has multiple amplitudes. The PSD plot shows that there is a secondary frequency which has
much smaller energy content than the primary frequency.

The flow topologies for the same three values of freestream velocity are shown in Fig. 19. The first two topologies are
harmonic, with the Un=Un

F ¼ 1:8 case having larger accumulations of vorticity than Un=Un

F ¼ 1:3 case. For Un=Un

F ¼ 2:3, the



Fig. 18. Parametric study A: comparison of LCO characteristics for different values of freestream velocity. Top row: time variation of pitch angle; middle
row: phase-plane plots; and bottom row: power-spectral density plots. Circles on the right side of each top-row subplot show the pitch values
corresponding to all the positive and negative peaks in pitch angle-vs.-time variation.
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simulation shows a non-uniform wake structure with large transverse displacements of the vortical flow structures, which
reflects the multiple-amplitude LCO seen for this velocity.

Fig. 20(a) and (b) shows the variation in LCO characteristics over a large freestream-velocity range using bifurcation plots
of pitch and plunge, while Fig. 20(c) and (d) plots the variations of reduced frequency, k, and phase angle between pitch and
plunge,ϕ. On the vertical axis of Fig. 20(a), peak values in pitch during the LCO are plotted. For each value of Un=Un

F , the peak
α values, identified by determining the instances at which dα=dtn ¼ 0, are plotted as was done in Fig. 18. In a similar manner,
the peak values of the plunge oscillations at various Un=Un

F are plotted in Fig. 20(b). The gray lines in 20(a) show the
freestream velocity values used for the illustrations in Figs. 18 and 19.

Fig. 20(a) and (b) is seen to have a bifurcation at a value of Un=Un

F slightly less than unity. While the bifurcation location in
aeroelastic studies (Lee et al., 1999a) is typically at Un=Un

F ¼ 1, the slight shift from unity here is because the Un

F is defined as
the flutter velocity from Murua et al. (2010), rather than as the velocity at which the bifurcation occurs.

When the freestream velocity is lower than the flutter velocity, the solution is stable and converges to zero amplitude for
all initial displacements. For values of nondimensional freestream velocity between the flutter speed and approximately
2Un

F , the bifurcation plots show single-period behavior. This transition from stable equilibrium to limit-cycle oscillation at
the flutter speed appears to be a supercritical Hopf bifurcation (Lee et al., 1999a).

The amplitude of single-period LCOs is seen to increase with increasing freestream velocity. At nondimensional velocities
greater than 2Un

F , departure from single-period behavior is seen. The peaks of the response take on multiple values and the
oscillation appears to be quasiperiodic, as gleaned from the PSD plot in Fig. 18. This type of transition from periodic to



Fig. 19. Parametric study A: flow topologies illustrated for three values of freestream velocity. From top to bottom: Un ¼ 1:3, 1.8 and 2.3 Un

F , respectively.

Fig. 20. Parametric study A: bifurcation characteristics as a function of freestream velocity, for the parameters listed in Table 1 with freestream velocity
being variable. (a) Value of pitch angle α when dα=dtn ¼ 0, (b) value of plunge displacement h=c when dh=dtn ¼ 0, (c) reduced frequency of response in
single-period regime, and (d) phase angle between pitch and plunge in single-period regime.
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quasiperiodic behavior has been reported, for instance, by Sarkar and Bijl (2008) in the case of a self-excited airfoil
undergoing dynamic stall. Finally, divergent oscillations occur as the freestream velocity is increased beyond 2:3Un

F . A
detailed dynamical analysis of the response observed at high freestream velocities is beyond the scope of this paper. We
simply refer to the oscillations seen between 2Un

F and 2:3Un

F as multi-peak oscillations. Fig. 20(c) shows the variation of
reduced frequency in the single-period-LCO regime. The reduced frequency has its highest value when the freestream
velocity is close to the linear flutter velocity, and decreases with increasing freestream velocity. Fig. 20(d) is a plot of the
phase angle between pitch and plunge, with pitch leading plunge. The plot shows that the phase angle increases nonlinearly
with increasing Un=Un

F . A study on the effect of varying initial conditions (not shown here) revealed that the LCOs resulting



Fig. 21. Parametric study B: bifurcation characteristics as a function of freestream velocity, for the parameters listed in Table 1 and βα ¼ 3. Left: Value of
pitch angle α when dα=dtn ¼ 0. Right: Value of plunge displacement h=c when dh=dtn ¼ 0.

Fig. 22. Parametric study B: comparison of LCO characteristics with and without cubic nonlinearity in pitch: (a) pitch angle, (b) plunge, (c) reduced
frequency, and (d) phase angle.
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from intermittent LEV shedding are independent of initial conditions. This is in contrast with LCOs resulting from dynamic
stall, which are dependent on the initial conditions (Sarkar and Bijl, 2008).

It is noted that when the freestream velocity is varied, the Reynolds number also varies proportionally. Hence, the critical
LESP value which depends on airfoil shape and Reynolds number would not be a constant over the range of freestream
velocities, as assumed. Nevertheless, this assumption is still used for the purpose of illustrating the trends in LCO
characteristics as a function of a single variable, the freestream velocity. The same caveat applies in Section 4.4 where again,
the freestream velocity is the parameter being varied.

4.4. Parametric study B: effect of cubic stiffening in torsional spring

In this Section, the added effect of positive cubic stiffening (hard spring) in torsion on the ensuing limit-cycle oscillations
is analyzed. The base parameters listed in Table 1 are employed, along with cubic stiffening in pitch of βα ¼ 3 (but keeping
βh ¼ 0). Considering freestream velocity as variable, bifurcation plots similar to those in Section 4.3 are presented in Fig. 21
to study the LCO characteristics.

Freestream velocities lower than the flutter velocity are seen to result in the response decaying to zero. This behavior was
observed regardless of initial conditions. Between the flutter speed and Un � 2Un

F , single-period limit-cycle behavior is
observed. Up until this value of freestream velocity, the aeroelastic behavior is qualitatively similar to that without the cubic
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stiffening in Section 4.3. For values of Un between 2Un

F and 2:3Un

F , single-period response results whereas it was observed
earlier that the response takes on multiple amplitudes in the absence of any structural nonlinearity. Finally, for values of
dimensionless freestream velocity greater than 2:3Un

F , single-period response in pitch along with small-amplitude multi-
peak vibrations in plunge are seen. This is in contrast to the study without cubic stiffening, where divergence occurred at
values of Un42:3Un

F . Thus, is it seen that one important effect of cubic hardening in high-frequency, vortex-dominated flows
is to increase the range of stable, non-divergent LCOs.

The effect of cubic hardening on aeroelastic behavior (other than extending the range of stable LCOs) is studied by
comparing single-period LCO characteristics in the following cases: a) no cubic stiffening (βα ¼ βh ¼ 0), (b) hard cubic
stiffening in pitch only (βα ¼ 3, βh ¼ 0), (c) hard cubic stiffening in plunge only (βα ¼ 0, βh ¼ 3), and (d) hard cubic
stiffening in both pitch and plunge (βα ¼ βh ¼ 3). LCO properties for values of freestream velocity between the flutter
velocity and 1:9Un

F (where single-period LCOs exist in all studies) are compared in Fig. 22. Broadly, it is observed that in
comparison with linear springs, the addition of any hard cubic stiffening results in lower pitch and plunge amplitudes.
The reduced frequency of response is however, nearly the same for all cases. While a positive cubic stiffening in pitch
increases the phase difference between pitch and plunge oscillation, the same cubic stiffening in plunge results in a
decrease in the phase difference. For the values selected, stiffening in pitch has a more dominant impact on the
aeroelastic behavior.
4.5. Parametric study C: effect of change in static unbalance and frequency ratio

In this section, the variation in LCO characteristics with structural parameters is studied. Static unbalance (xα) and
frequency ratio (ω) are varied, and all other parameters are the same as those listed in Table 1.

Fig. 23(a) and (b) shows the variation in pitch and plunge amplitudes of the resulting LCO over the parameter space
identified from Fig. 14. Three values of xα (0.05, 0.1, 0.2) and frequency ratios between 1.0 and 1.3 are considered. The
variation of LCO amplitudes in this space is seen to be very nonlinear. This is likely because the static unbalance and
frequency ratio also affect the flutter speed, thereby making the relationship between the pitch/plunge amplitudes and
these parameters very complex. It is noted that some of the amplitudes are zero valued. These cases correspond to
simulations where the freestream velocity (Un ¼ 0:4667 from Table 1) is lower than the flutter velocity (which is a function
of xα and ω), thereby resulting in the response decaying to zero. Fig. 23(c) and (d) is plots of reduced frequency and phase
angle between pitch and plunge, for the LCOs in the chosen parameter space. The reduced frequency of response is seen to
vary linearly with the frequency ratio (ω). Further, higher values of static unbalance (between 0.05 and 0.2), result in LCOs of
higher frequency in pitch and plunge. It is noted again that this is the only study where the flutter velocity is also a function
of the varying parameters, thereby resulting in a complex and counter-intuitive variations of pitch- and plunge-LCO
amplitudes.
Fig. 23. Parametric study C: LCO characteristics as function of structural parameters at a constant freestream velocity. The parameters listed in Table 1 are
used as a baseline with xα and ω as variables: (a) pitch amplitude, (b) plunge amplitude, (c) reduced frequency, and (d) phase angle between pitch and
plunge.
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4.6. Parametric study D: effect of change in airfoil shape (LESPcrit)

The critical value of leading edge suction parameter (LESP) governs leading-edge vortex shedding in the aerodynamic
model. This value is independent of motion kinematics, but depends on the airfoil shape and Reynolds number of operation.
Since different airfoil-Re combinations may result in various critical LESP values, it is of interest to study the variation in LCO
characteristics as a function of critical LESP. The parameters in Table 1 are used as a baseline, with LESPcrit being a variable.

Limit-cycle properties (pitch and plunge amplitude, reduced frequency, and phase angle) are plotted against critical LESP
in Fig. 24. As the value of LESPcrit increases, pitch and plunge amplitudes increase linearly. It is interesting, however, that the
reduced frequency of response is nearly the same value and independent of critical LESP. In earlier research, Ramesh et al.
(2012) have shown that airfoils with more rounded leading edges can support more suction, and hence have higher values
of critical LESP. For example, a flat plate at Re¼1000 has LESPcrit ¼ 0:11, and a NACA0015 airfoil at the same Reynolds
number has LESPcrit ¼ 0:19. Hence, it follows that more rounded airfoils result in LCOs of greater amplitudes but the same
frequency. The increase in LCO amplitudes with critical LESP may be attributed to more a more rounded leading edge being
able to sustain more leading-edge suction, thereby bounding the LCOs at a larger amplitude.

It is noted that a zero value of critical LESP corresponds to a perfectly sharp leading edge with continuous vortex
shedding from the leading edge, and a “very high” critical LESP value (LESPcrit ¼ 5) models no vortex shedding from the
leading edge. Hence, in the case of the latter, the aerodynamic model is “linear” and destructive oscillations would occur at
Fig. 25. Parametric study D: flow topology plots for the limit-cycle responses obtained using different values of critical LESP. Plots (a)–(d) depict vorticity
distributions at four equally spaced time intervals over one period of the oscillation (a) tn/Tn=0; (b) tn/Tn=0.25; (c) tn/Tn=0.5; and (d) tn/Tn=0.75.

Fig. 24. Parametric study D: LCO characteristics as function of critical LESP value. The parameters listed in Table 1 are used as a baseline: (a) pitch
amplitude, (b) plunge amplitude, (c) reduced frequency, and (d) phase angle between pitch and plunge.
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speeds greater than the linear flutter speed, provided the structure is linear too. In the current study, the upper LESPcrit
boundary is fixed at 0.3. As mentioned earlier, critical LESP values greater than this value are not considered because it is
unrealistic that such a high suction could be attained without significant trailing-edge separation, which is not
modeled here.

Flow topology plots at four equally spaced instants over one time period, for three values of critical LESP are shown in
Fig. 25. Clearly, larger values of LESPcrit (more rounded airfoils) correspond to larger LCO amplitudes and larger vortical
structures in the flowfield. The location of the LEV on the airfoil is nearly the same at any given time, regardless of LESPcrit.
This observation suggests that the frequency of vortex shedding and wake frequency are unchanged by the critical LESP, in
accordance with the nearly constant LCO reduced frequency.

5. Conclusions

A geometrically nonlinear 2-DOF airfoil model is combined with a discrete-vortex aerodynamic model having capability
of intermittent leading-edge vortex shedding, to develop a nonlinear aeroelastic framework. This framework is used to
investigate high-frequency limit-cycle oscillations at low Reynolds number where the unsteady aerodynamics are
dominated by apparent-mass effects and leading-edge vortex shedding. A rounded flat-plate airfoil at a Reynolds number
of 1000 is the base configuration for the study. The discrete-vortex methodology used is computationally less expensive
than CFD while still capturing the significant features of the aerodynamics, and is used to study the characteristics of LCOs in
the regime under consideration and their dependence on various parameters.

For all freestream velocities lower than the airfoil's flutter velocity, the pitch and plunge responses converge to zero
regardless of initial conditions. This is in contrast to studies at lower reduced frequencies (dynamic stall regime), where
subcritical LCOs have been reported (e.g., in Sarkar and Bijl, 2008). At velocities immediately greater than the flutter velocity,
the airfoil's motion exhibits single-period limit-cycle behavior and the limiting values are independent of initial conditions
for the cases considered. Hence, the bifurcation plot of LCO amplitude with freestream velocity as the bifurcation parameter
exhibits a supercritical Hopf bifurcation at the flutter velocity. Beyond a certain velocity above the flutter velocity, single-
period limit-cycle behavior is lost and multiple-peak oscillations are seen. At even higher velocities, the response is
divergent when the structural model is linear. Divergence at these velocities may be avoided, and the envelope of stable
LCOs increased, by using a spring with positive cubic stiffening (hard spring) rather than a linear spring. The parametric
studies show that, in addition to structural nonlinearities, the vortex-dominated flowfield critically impacts the system
dynamics leading to a complex and often hardly intuitive behavior.

The leading-edge suction parameter modulates LEV shedding in the discrete-vortex aerodynamic model used here. The
critical LESP value depends on the airfoil shape and Reynolds number, and is a measure of the maximum suction force that
the airfoil's leading edge can support without flow separation. Airfoils with more rounded leading edges therefore have a
greater critical LESP value, and one with a sharp leading edge has a critical LESP of zero corresponding to the flow always
being separated at the leading edge. The LCO characteristics as a function of critical LESP are studied to determine their
dependence on airfoil shape. It is seen that, with increase in critical LESP, pitch and plunge amplitudes of the LCOs increase.
It is very interesting, however, that the reduced frequency of oscillation is almost the same for all critical LESP values,
suggesting that it is nearly independent of airfoil shape.

The parameter space was selected such that the resulting LCOs were of high reduced frequency, corresponding to values
of frequency ratio close to unity. It is of interest that these values of frequency ratio also relate to low flutter velocities. While
this is the very reason that such frequency ratios are undesirable in traditional aerospace applications, they may be
beneficial for LCO-based power-harvesting mechanisms where low “cut-in” speeds are sought. Limit-cycle oscillations in
this regime have not received much attention in the literature, and hence, additional studies are needed using higher-order
computations and experiments, as well as dynamical-system analysis. In any case, the excellent accuracy/cost balance
offered by the methodology presented in this paper suggests that it could be successfully employed to investigate optimum
setups for power harvesting in the low-Reynolds-number regime.
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